وڪيپيڊيا sdwiki https://sd.wikipedia.org/wiki/%D9%85%D9%8F%DA%A9_%D8%B5%D9%81%D8%AD%D9%88 MediaWiki 1.45.0-wmf.6 first-letter ذريعات خاص بحث واپرائيندڙ واپرائيندڙ بحث وڪيپيڊيا وڪيپيڊيا بحث فائل فائل بحث ذريعات وڪي ذريعات وڪي بحث سانچو سانچو بحث مدد مدد بحث زمرو زمرو بحث باب باب بحث TimedText TimedText talk ماڊيول ماڊيول بحث فلسفو 0 40641 319978 316837 2025-06-19T06:51:14Z KaleemBot 10779 خودڪار: [[زمرو:مکيه موضوع جا مضمون]] جو اضافو 319978 wikitext text/x-wiki '''فلسفو''' يا '''فلاسافي''' (Philosophy) لفظ اصل ۾ ٻن يوناني لفظن جو ميلاپ آهي. فليو (Phileo) معنيٰ محبت يا پيار ڪرڻ ۽ سوفيا (Sophia) معنيٰ سڃاڻپ يا معلومات. ان مان ظاهر آهي تہ فلسفي يا فلاسافيءَ جو مطلب سڃاڻپ يا معلومات سان محبت ڪرڻ آهي. ڏاهپ جو هڪ اهڙو علم، جيڪو ڪنھن نموني [[سرشٽي|ڪائنات]] ۾ انسان متعلق بنيادي سوالن تي بحث ڪري، مثال طور ڇا دنيا جي بناوٽ طبعي آهي؟ ڇا اسان يقين سان ڪجهہ ڪري سگهون ٿا؟، ڇا اسان آزاد آهيون؟، وغيره. اهڙي دنيا سان تعلق رکندڙ ٻيا مسئلا بہ ان ۾ اچي وڃن ٿا. فلسفو سائنس کان مختلف آهي. هن ۾ هر شيءِ تجربي سان ظاهر ڪري نہ ٿي سگهجي نہ وري مذهبي طور ان جي ڀيٽ ڪري سگهجي ٿي. فلسفو ما بعد الطبيعات، اخلاقيات، جيڪو شڪ جا دروازا کولي ٿو. اهو صحيح آهي تہ سائنس بہ اسان کي معلومات ڏئي ٿي، پر اها معلومات فلسفي جي معلومات کان ٻئي قسم جي آهي، ڇا ڪاڻ تہ سائنسي معلومات حقيقت جي صرف هڪ حصي جي معلومات ڏئي ٿي. <ref>ڪتاب: ادبي اصطلاحن جي تشريحي لغت؛ مرتب: مختيار احمد ملاح؛ پبلشر: [[سنڌي لئنگئيج اٿارٽي]]، حيدرآباد، سنڌ.</ref> سنڌ فلاسافيڪل سوسائٽي؟ سنڌ ۾ فلسفي جي پھرين ويبسائيٽ 'سنڌ فلاسافيڪل سوسائٽي' [https://www.sindhphilosophicalsociety.come/ (Sindh Philosophical Society] {{Webarchive|url=https://web.archive.org/web/20230810231540/https://www.sindhphilosophicalsociety.com/ |date=2023-08-10 }}) آھي.ھن سوسائٽي جو بنياد سنڌ ۾ فلسفي جي علم کي عام ڪرڻ ۽ سنڌي سماج ۾ فلسفي جي شاگرد سان ٿيندڙ ناانصافين خلاف ھڪ علمي تحريڪ جو آغاز ڪرڻ آھي.سنڌ فلاسافيڪل سوسائٽي تي ھن وقت تائين ڪيترا ئي فلسفي تي مضمون سنڌي،اردو ۽ انگلش زبانن ۾ شايع ٿي چڪا آھن ۽ انھي سان گڏوگڏ ھڪ انگلش زبان ۾ ڪتاب پڻ آنلائن ڪيو ويو آھي.سنڌ فلاسافيڪل سوسائٽي جمھوريتي اصولن تحت ھلندڙ سنڌ جي واحد فلسفي تي مڪمل طور فعال سوسائٽي آھيجنھن جو موجوده صدر اظھر علي آھي.سنڌ فلاسافيڪل سوسائٽي متعلق وڌيڪ ڄاڻڻ لاءِ سنڌ فلاسافيڪل سوسائٽي جي ويبسائيٽ،انسٽاگرام ۽ فيسبڪ جي لنڪ تي وزٽ ڪري سگھو ٿا. <nowiki>https://linktr.ee/sindhphilosophicalsociety</nowiki> / == حوالا == {{حوالا}} [[زمرو:بشريات]] [[زمرو:فلسفو]] [[زمرو:مکيه موضوع جا مضمون]] 55wsq8dtxuxx7qm3utpwlcndlcosjt9 اک جو موتيو 0 41041 319998 314536 2025-06-19T11:51:24Z Ibne maryam 17680 /* حوالا */ 319998 wikitext text/x-wiki {{Infobox medical condition | name =اک جو موتيو<br> Cataract | image = Cataract in human eye.png | caption = روشني ذريعي اک جي چڪاس دوران موتيي جي اک ۾ موجودگيءَ جو منظر | field = [[آپٿالمولاجي]] | symptoms = رنگ جھيڻو، ڌنڌلي نظر، تيز روشني ۾ تڪليف وغيره<ref name=NIH2009 /> | complications = حادثاتي طور تي ڪرڻ، ڊپريشن، نظر جو نہ پوڻ<ref name=Gim2011/><ref name=WHO2014/> | onset =آھستي آھستي<ref name=NIH2009/> | duration = | causes = [[پوڙھائپ]] [[جسماني زخم]]، اکين جي آپريشن بعد [[تابڪاري]] ۾ اک کي اگھاڙو ڪرڻ<ref name=NIH2009/><ref name=WHOPri/> | risks = [[ذيابيطس (شوگر)|ذيابيطس]] [[سگريٽ نوشي]]، [[شراب نوشي]]،[[اس]] ۾ گھڻو وقت رھڻ | diagnosis = [[اکين جي چڪاس]]<ref name=NIH2009/> | differential = | prevention =[[اس جو چشمو ]], سگريٽ نوشي جو خاتمو | treatment = [[عينڪ]], [[موتئي جي سرجري ]]<ref name=NIH2009/> | medication = | prognosis = | frequency = 6 ڪروڙ ۾ ھڪ ڄڻو (2015)<ref name=GBD2015Pre>{{cite journal|last1=GBD 2015 Disease and Injury Incidence and Prevalence|first1=Collaborators.|title=Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015.|journal=Lancet|date=8 October 2016|volume=388|issue=10053|pages=1545–1602|pmid=27733282|doi=10.1016/S0140-6736(16)31678-6|pmc=5055577}}</ref> | deaths = }} '''اک جو موتيو''' (Cataract)، اک جو ھڪ قسم جو نقص آهي، جنھن ۾ اک جي بلور جي شفاف ھئڻ واري خاصيت گھٽجي ويندي آھي ۽ اھا سخت ۽ غير شفاف ٿي پوندو آهي. ان جو مکيہ سبب اک تي ڌنڌ ٿي پوڻ آهي. ھي نقص سرجري جي ذريعي يا ھٿرادو بلور لڳائڻ سان ختم ٿي سگھي ٿو. ==حوالا== {{حوالا}} [[زمرو:بيماريون]] [[زمرو:آپٿالمولاجي]] [[زمرو:اکين جي بيماريون]] gpvv1kt91beg4jvl6y3d659t872xcni اک جو ڦير 0 41042 319993 159521 2025-06-19T11:47:55Z Ibne maryam 17680 319993 wikitext text/x-wiki [[فائل:Astigmatism (Eye).png|thumb|upright=1.3|اک جي ڦير جو خاڪو]] '''اک جو ڦير''' (astigmatism) اک جو ھڪ نقص آهي ۽ صحتمند ھجڻ باوجود اک جو اڳيون مٿاڇرو جڏهن پورو گول نہ ھوندو آھي يا ماڻڪيء واري حصي جي گولائي ۾ ڪي نقص ھوندا آھن تہ ھڪڙي پاسي واري عڪس جو وڌاء ٻئي پاسي واري عڪس کان وڏو ھوندو آھي، جنھن ڪري ان شخص کي افقي ليڪون تہ صحيح نظر اينديون آھن پر عمودي ليڪون ڌنڌليون نظر اينديون آھن. ان مرض جو علاج ڪانٽيڪٽ لينس جي ذريعي ئي سگھي ٿو. ==حوالا== {{حوالا}} [[زمرو:بيماريون]] [[زمرو:آپٿالمولاجي]] [[زمرو:اکين جي بيماريون]] ougvxmatj1fw83re5flef7bnxek3tfd مرڪب 0 41080 319894 111381 2025-06-18T13:22:26Z Ibne maryam 17680 319894 wikitext text/x-wiki '''مرڪب''' (Compound)، ٻن يا ٻن کان وڌيڪ ايٽم جي ڪيميائي ملاپ تي وجود ۾ اچڻ ٿا. جڏھن ٻہ يا ٻن کان وڌيڪ [[عنصر]] ڪيميائي طور تي ڪنھن خاص نسبت تي پاڻ ۾ ملي وڃن تہ انھن جي ميلاپ مان حاصل ٿيندڙ شئي کي مرڪب چئبو آهي.پر جي ڪيميائي تبديلي نہ اچي تہ پوءِ ان کي [[مڪسچر]] چئبو. ==حوالا== {{حوالا}} [[زمرو:مادي جي حالتون]] [[زمرو:ڪيميائي اصطلاحون]] 28tryln3jyu1gimy6voa2qdvpjl17jk 319895 319894 2025-06-18T13:23:29Z Ibne maryam 17680 319895 wikitext text/x-wiki '''مرڪب''' (Compound)، ٻن يا ٻن کان وڌيڪ [[ائٽم|ايٽمن]] جي [[ڪيميائي بانڊ|ڪيميائي ملاپ]] تي وجود ۾ اچڻ ٿا. جڏھن ٻہ يا ٻن کان وڌيڪ [[عنصر]] ڪيميائي طور تي ڪنھن خاص نسبت تي پاڻ ۾ ملي وڃن تہ انھن جي ميلاپ مان حاصل ٿيندڙ شئي کي مرڪب چئبو آهي.پر جي ڪيميائي تبديلي نہ اچي تہ پوءِ ان کي [[مڪسچر]] چئبو. ==حوالا== {{حوالا}} [[زمرو:مادي جي حالتون]] [[زمرو:ڪيميائي اصطلاحون]] 0i6wli6xo9bvs3jem5ofp0uutk68h3g 319896 319895 2025-06-18T13:26:17Z Ibne maryam 17680 319896 wikitext text/x-wiki '''مرڪب''' (Compound)، ٻن يا ٻن کان وڌيڪ [[ائٽم|ايٽمن]] جي [[ڪيميائي بانڊ|ڪيميائي ملاپ]] تي وجود ۾ اچڻ ٿا. جڏھن ٻہ يا ٻن کان وڌيڪ [[ڪيميائي عنصر|ڪيميائي تت]] ڪيميائي طور تي ڪنھن خاص نسبت تي پاڻ ۾ ملي وڃن تہ انھن جي ميلاپ مان حاصل ٿيندڙ شئي کي مرڪب چئبو آهي. صرف طبعي ملاپ، جن ۾ ڪيميائي تبديليون نه اينديون آهن، اھڙي شيئن کي [[مڪسچر]] چئبو آهي. ==حوالا== {{حوالا}} [[زمرو:مادي جي حالتون]] [[زمرو:ڪيميائي اصطلاحون]] j7aq1179u71920omokdo9ze7kki2uly 319898 319896 2025-06-18T13:33:52Z KaleemBot 10779 خودڪار: [[زمرو:سلجھائپ صفحا]] جو اضافو + ترتيب 319898 wikitext text/x-wiki '''مرڪب''' (Compound)، ٻن يا ٻن کان وڌيڪ [[ائٽم|ايٽمن]] جي [[ڪيميائي بانڊ|ڪيميائي ملاپ]] تي وجود ۾ اچڻ ٿا. جڏھن ٻہ يا ٻن کان وڌيڪ [[ڪيميائي عنصر|ڪيميائي تت]] ڪيميائي طور تي ڪنھن خاص نسبت تي پاڻ ۾ ملي وڃن تہ انھن جي ميلاپ مان حاصل ٿيندڙ شئي کي مرڪب چئبو آهي. صرف طبعي ملاپ، جن ۾ ڪيميائي تبديليون نه اينديون آهن، اھڙي شيئن کي [[مڪسچر]] چئبو آهي. ==حوالا== {{حوالا}} [[زمرو:سلجھائپ صفحا]] [[زمرو:ڪيميائي اصطلاحون]] [[زمرو:مادي جي حالتون]] tg3qjoqmmb1cvkznfp2y1m0qxwtpxc0 مڪسچر 0 41081 319893 290952 2025-06-18T13:18:25Z Ibne maryam 17680 /* حوالا */ 319893 wikitext text/x-wiki هڪ '''آميزو''' يا مڪسچر (Mixture) هڪ مواد آهي جيڪو ٻن يا وڌيڪ مختلف [[ڪيميائي عنصر|ڪيميائي مواد]] مان ٺهيل آهي جنهن کي طبيعي طريقي سان الڳ ڪري سگهجي ٿو. هڪ آميزو ٻن يا وڌيڪ مادي جو طبيعي ميلاپ آهي جنهن ۾ سڃاڻپ برقرار رکيا ويندا آهن ۽ [[محلول]]، سسپينشن ۽ [[ڪالئائڊ|ڪولائيڊس]] جي صورت ۾ ملن ٿا. آميزو ميڪانياتي طور تي ڪيميائي مادن جهڙوڪ [[ڪيميائي عنصر|عنصرن]] ۽ [[مرڪب|مرڪبن]] کي بغير [[ڪيميائي بانڊنگ]] يا ٻي ڪيميائي تبديلي جي، ملائڻ جي پيداوار آهي، انهي ڪري ته هر جزوي مواد پنهنجي پنهنجي ڪيميائي خاصيت ۽ شڪل کي برقرار رکي ٿو. ان حقيقت جي باوجود ته ان جي اجزاء ۾ ڪي به ڪيميائي تبديليون نه ٿينديون آهن، آميزي جي طبيعي خاصيت، جهڙوڪ ان جي پگھلڻ جو نقطو (Melting Point)، انهن اجزاء کان مختلف ٿي سگهي ٿي. ڪجھ مرکب طبيعي (مڪينيڪل يا حرارتي) ذريعي استعمال ڪندي پنھنجي اجزاء ۾ ورهائي سگھجن ٿا. ايزيوٽروپس (Azeotropes) هڪ قسم جو آميزو آهي جيڪي عام طور تي انهن جي اجزاء (طبيعي يا ڪيميائي عملن يا، انهن جو هڪ ميلاپ) حاصل ڪرڻ لاء ضروري علحدگيء جي عمل جي حوالي سان ڪافي مشڪلات پيدا ڪري ٿو. ==آميزن جي خاصيتون== سڀئي آميزا ميڪانياتي طريقن سان الڳ ٿي سگھن ٿا (مثال طور، صاف ڪرڻ، ڊسٽيليشن، اليڪٽرولائيسز، ڪروميٽوگرافي، گرم ڪرڻ، فلٽريشن، ثقلي ترتيب، سينٽريفيوگيشن).<ref>{{cite book|title=Home Front|year=2017|isbn=978-0-8130-5425-4|editor1-last=Pleasants|editor1-first=Julian M|chapter=A Call to Duty: The Selective Service Act of 1940|doi=10.5744/florida/9780813054254.003.0003}}</ref><ref name="mixture2">{{Cite encyclopedia|title=Mixture|encyclopedia=The Encyclopedia of Environmental Studies|publisher=Facts on File|year=2001|editor-first=William|editor-last=Ashworth|editor2-first=Charles E.|editor2-last=Little}}</ref> آميزا ڪيميائي مرڪب کان هيٺين طريقن سان مختلف آهن: * آميزن ۾ موجود مواد کي طبيعي طريقن جهڙوڪ فلٽريشن، منجمد ڪرڻ ۽ ڊسٽيليشن استعمال ڪندي الڳ ڪري سگهجي ٿو. * جڏهن هڪ آميزو ٺهي ٿو، ان ۾ ٿوري يا ڪا به توانائي تبديلي نه ايندي آهي (ڏسو ملائڻ جي اينٿالپي). * آميزن ۾ موجود شيون پنهنجون الڳ خاصيتون رکن ٿيون. ريل ۽ پاڻيءَ جي مثال ۾، ٻنھي مادا مان ڪنھن ھڪ ۾ به تبديلي نه ايندي آھي، جڏھن انھن کي ملايو ويندو آھي. جيتوڻيڪ ريتي پاڻيءَ ۾ آهي، اها اڃا تائين ساڳي خاصيت رکي ٿي، جيڪا پاڻيءَ کان ٻاهر هوندي هئي. * آميزن ۾ متغير ترڪيب هوندي آهي، جڏهن ته مرڪبن جو هڪ مقرر، قطعي فارمولا هوندو آهي. * جڏهن ملايو ويندو آهي، انفرادي شيون پنهنجي خاصيتن کي هڪ آميزي ۾ رکنديون آهن، جڏهن ته اهي هڪ مرڪب ٺاهيندا آهن، انهن جي خاصيت تبديل ٿي سگهي ٿي.<ref>{{Cite web|url=https://www.chemicool.com/definition/mixture.html|title=Definition of mixture - Chemistry Dictionary|website=www.chemicool.com|access-date=2018-11-30}}</ref> هيٺ ڏنل جدول ٽن "خاندانن" جي آميزن جي مکيه خاصيتون ۽ مثالن جي سڀني ممڪن مرحلن جي ميلاپ لاءِ آميزن جي ٽيبل. {| class="wikitable" |+آميزن جي ٽيبل |- ! ورهائڻ وارو مرحلو (آميزي جو مرحلو) || حل يا منتشر مرحلو || محلول || کولائيڊ || سسپينشن |- ! rowspan="3" | [[Gas]] | گئس || گئسن جو آميزو: هوا (آڪسيجن ۽ ٻيون گيسون نائٽروجن ۾) || {{CNone|None}} || {{CNone|None}} |- | مائع || {{CNone|None}} || مائع ايروسول:<ref name="PDF1">{{Cite report|url=https://www.iupac.org/publications/pac/pdf/1972/pdf/3104x0577👺.pdf|title=Manual of Symbols and Terminology for Physicochemical Quantities and Units. Appendix II Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Part I|last=Everett|first=D. H.|date=23 July 1971|publisher=International Union of Pure and Applied Chemistry: Division of Physical Chemistry|location=London|access-date=28 October 2016|url-status=live|archive-url=https://web.archive.org/web/20161028084759/https://www.iupac.org/publications/pac/pdf/1972/pdf/3104x0577.pdf|archive-date=28 October 2016}}</ref><br />ڪهرو، دھند، بخارات، وار جا اسپري || اسپري |- | سولڊ | {{CNone|None}} || سولڊ ايروسول:<ref name="PDF1"/><br />دونھون، برفاني ڪڪر، هوا جا ذرات || مٽي، ريل |- ! rowspan="3" | [[Liquid]] | گئس || محلول: پاڻي ۾ آڪسيجن || مائع فوم: ڦينٽل ڪريم ، شيونگ ڪريم || سمنڊ جو جھاگ، بيئر |- | مايع || محلول: الڪوحل مشروبات || ايملشن: کير، مايئونيز، هٿ جي ڪريمون || سرڪي ۾ ذرات |- | سالڊ || محلول: پاڻي ۾ کنڊ || مائع حل: رنگين انڪ، رت || سسپينشن: مٽي (پاڻيءَ ۾ معلق مٽيءَ جا ذرات)، چاڪ پائوڊر پاڻيءَ ۾ معلق |- ! rowspan="3" | [[Solid]] | گئس || محلول: دھاتن ۾ هائيڊروجن || سالڊ فوم: ايروجيل اسٽائيرو فوم، پومائيس || فوم: سڪل اسپنج |- | Liquid || Solution:<br /> [[amalgam (chemistry)|amalgam]] ([[mercury (element)|mercury]] in [[gold]]), [[hexane]] in [[paraffin wax]] || [[Gel]]:<br /> [[agar]], [[gelatin]], [[silicagel]], [[opal]] || Wet sponge |- | Solid || Solution:<br /> [[alloy]]s, [[plasticizer]]s in [[plastic]]s || Solid sol:<br /> [[cranberry glass]] || [[Clay]], [[silt]], [[sand]], [[gravel]], [[granite]] |} ==هڪجهڙا ۽ متفاوت آميزا== ==آميزي جي قسمن جي وچ ۾ فرق== ==صحت تي اثر== ==هڪجهڙائي== ==پڻ ڏسو== جڏھن ٻہ يا ٻن کان وڌيڪ [[ڪيميائي عنصر]] بغير ڪنهن تناسب جي طبيعي طور تي پاڻ ۾ ملن ۽ انھن جي ملڻ سان ڪابہ ڪيميائي تبديلي عمل ۾ نہ اچي تہ ان کي '''آميزو''' يا مڪسچر (Mixture) چئبو آهي. پر جي ڪا ڪيميائي تبديلي عمل ۾ اچي تہ ان کي [[مرڪب]] چئبو آهي. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:مادي جي حالتون]] [[زمرو:ڪيميائي اصطلاحون]] 6jq6tu5qm3el2a6pb1h60z96e62047d ڪالئائڊ 0 47953 319891 272737 2025-06-18T13:16:44Z Ibne maryam 17680 /* حوالا */ 319891 wikitext text/x-wiki [[فائل:Milk.jpg|thumb|[[کير]] ھڪ پاڻياٺي ڪالئائڊ آھي جنھن ۾ مکڻ واري چرٻي جا ننڍڙا گولڙا پاڻي واري محلول ۾ ڦھليل ھوندا آھن.]] '''ڪالئائڊ''' (Colloid) علم ڪيميا يا ڪيمسٽري ۾ ھڪ مرڪب جو نالو آهي. خوردبيني تي نظر ايندڙ ذرڙن جي مختلف قلمي مادن جي [[مرڪب]](mixture) کي ڪالئائڊ چوندا آهن. اھو مرڪب اڪثر پاڻياٺ وارو ھوندو آھي.<ref>{{Cite web |publisher=Britannica Online Encyclopedia |url=http://www.britannica.com/EBchecked/topic/125898/colloid |title=Colloid |accessdate=31 August 2009}}</ref> [[محلول]] (Solution) واري مرڪب ۾ مختلف مادن جا ذرا ھڪ ٻئي سان ملي حل ٿي ويندا آهن. [[سسپينشن]] واري مرڪب ۾ مادن جا ذرا وڏا ٿيندا آھن ۽ مادن جا قلم مرڪب ۾ برقرار رھندا آھن ۽ ايترا وڏا ھوندا آھن جو انھن کي سکڻي اک سان ڏسي سگھجي ٿو، ۽ اھي سطح ۽ تري جي وچ ۾ پاڻياٺ ۾ اٿيل رھندا آھن يعني ھيٺ تري ۾ لھي نہ ايندا آهن. ڪالئائڊ م مرڪب سسپينشن وانگر ھوندو آھي پر ان ۾ مادن جا قلم اکين سان ڏسي نہ سگھبا آھن پر انھن کي ڏسڻ لاءِ عام خوردبين جي ضرورت پوندي آهي. ڪالئائڊ مرڪب ۾ بہ ذرڙا پاڻياٺ جي سطح کان تري وچ ۾ برقرار رھن ٿا ۽ گھڻي عرصي گذرڻ بعد بہ ترو (sedimentation) نہ وٺندا آهن. ڪالئائڊ جي مرڪب ۾ ڦھليل قلمي ذرڙن جو قطر ھڪ کان ھڪ ھزار [[نينو ميٽر|نينو ميٽرن]] تائين ھوندو آھي.<ref>{{Cite book|title=Physical Chemistry|last=Levine|first=Ira N.|publisher=McGraw-Hill|year=2001|isbn=978-0-07-231808-1|edition= 5th|location=Boston|pages=955}}</ref> انھن قلمن مان ڪجهه اليڪٽرانڪ خوردبين کانسواءِ ڏسي نہ ٿا سگھجن انھن م 250 نینو ميٽرن واري قطر ۽ ان کان گھٽ وارا ذرڙا شامل آهن. ھن قسم جا مرڪب سائنس جي ھڪ شاخ [[انٽرفيس اينڊ ڪالئائڊ سائنس]] جو موضوع آھن جيڪا سال 1845ع ۾ اٽليءَ جو ڪيمسٽ [[فرانسسڪو سيلمي]] متعارف ڪرائي،<ref>Francesco Selmi, ''Studi sulla dimulsione di cloruro d'argento'', Nuovi Annali delle Scienze Naturali di Bologna, fasc. di agosto 1845.</ref> ۽ ان جي وڌيڪ تحقيق سال 1861ع کان اسڪاٽلينڊ جي ڪيمسٽ [[ٿامس گراھم]] ڪئي.<ref>Graham coined the term "colloid" in 1861. See: Graham, Thomas (1861) [http://rstl.royalsocietypublishing.org/content/151/183.full.pdf+html "Liquid diffusion applied to analysis"], ''Philosophical Transactions of the Royal Society of London'', '''151''' : 183–224. From page 183: "As gelatine appears to be its type, it is proposed to designate substances of the class as ''colloids'', and to speak of their peculiar form of aggregation as the ''colloidal condition of matter''."</ref> ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي اصطلاحون]] bzs0f4pp0tzr1ym05qvnvvuqt7tager 319892 319891 2025-06-18T13:17:30Z Ibne maryam 17680 /* حوالا */ 319892 wikitext text/x-wiki [[فائل:Milk.jpg|thumb|[[کير]] ھڪ پاڻياٺي ڪالئائڊ آھي جنھن ۾ مکڻ واري چرٻي جا ننڍڙا گولڙا پاڻي واري محلول ۾ ڦھليل ھوندا آھن.]] '''ڪالئائڊ''' (Colloid) علم ڪيميا يا ڪيمسٽري ۾ ھڪ مرڪب جو نالو آهي. خوردبيني تي نظر ايندڙ ذرڙن جي مختلف قلمي مادن جي [[مرڪب]](mixture) کي ڪالئائڊ چوندا آهن. اھو مرڪب اڪثر پاڻياٺ وارو ھوندو آھي.<ref>{{Cite web |publisher=Britannica Online Encyclopedia |url=http://www.britannica.com/EBchecked/topic/125898/colloid |title=Colloid |accessdate=31 August 2009}}</ref> [[محلول]] (Solution) واري مرڪب ۾ مختلف مادن جا ذرا ھڪ ٻئي سان ملي حل ٿي ويندا آهن. [[سسپينشن]] واري مرڪب ۾ مادن جا ذرا وڏا ٿيندا آھن ۽ مادن جا قلم مرڪب ۾ برقرار رھندا آھن ۽ ايترا وڏا ھوندا آھن جو انھن کي سکڻي اک سان ڏسي سگھجي ٿو، ۽ اھي سطح ۽ تري جي وچ ۾ پاڻياٺ ۾ اٿيل رھندا آھن يعني ھيٺ تري ۾ لھي نہ ايندا آهن. ڪالئائڊ م مرڪب سسپينشن وانگر ھوندو آھي پر ان ۾ مادن جا قلم اکين سان ڏسي نہ سگھبا آھن پر انھن کي ڏسڻ لاءِ عام خوردبين جي ضرورت پوندي آهي. ڪالئائڊ مرڪب ۾ بہ ذرڙا پاڻياٺ جي سطح کان تري وچ ۾ برقرار رھن ٿا ۽ گھڻي عرصي گذرڻ بعد بہ ترو (sedimentation) نہ وٺندا آهن. ڪالئائڊ جي مرڪب ۾ ڦھليل قلمي ذرڙن جو قطر ھڪ کان ھڪ ھزار [[نينو ميٽر|نينو ميٽرن]] تائين ھوندو آھي.<ref>{{Cite book|title=Physical Chemistry|last=Levine|first=Ira N.|publisher=McGraw-Hill|year=2001|isbn=978-0-07-231808-1|edition= 5th|location=Boston|pages=955}}</ref> انھن قلمن مان ڪجهه اليڪٽرانڪ خوردبين کانسواءِ ڏسي نہ ٿا سگھجن انھن م 250 نینو ميٽرن واري قطر ۽ ان کان گھٽ وارا ذرڙا شامل آهن. ھن قسم جا مرڪب سائنس جي ھڪ شاخ [[انٽرفيس اينڊ ڪالئائڊ سائنس]] جو موضوع آھن جيڪا سال 1845ع ۾ اٽليءَ جو ڪيمسٽ [[فرانسسڪو سيلمي]] متعارف ڪرائي،<ref>Francesco Selmi, ''Studi sulla dimulsione di cloruro d'argento'', Nuovi Annali delle Scienze Naturali di Bologna, fasc. di agosto 1845.</ref> ۽ ان جي وڌيڪ تحقيق سال 1861ع کان اسڪاٽلينڊ جي ڪيمسٽ [[ٿامس گراھم]] ڪئي.<ref>Graham coined the term "colloid" in 1861. See: Graham, Thomas (1861) [http://rstl.royalsocietypublishing.org/content/151/183.full.pdf+html "Liquid diffusion applied to analysis"], ''Philosophical Transactions of the Royal Society of London'', '''151''' : 183–224. From page 183: "As gelatine appears to be its type, it is proposed to designate substances of the class as ''colloids'', and to speak of their peculiar form of aggregation as the ''colloidal condition of matter''."</ref> ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:مادي جي حالتون]] [[زمرو:ڪيميائي اصطلاحون]] lfg73ax1kjimm5ay0ob9ez0bmcojkgd جان ڊالٽن 0 48841 319979 306374 2025-06-19T07:32:42Z Ibne maryam 17680 صفحي "[[:en:Special:Redirect/revision/1292151182|John Dalton]]" مان ڀاڱي "__LEAD_SECTION__" جو ترجمو ڪندي سرجيو ويو 319979 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton)؛ (6 سيپٽمبر 1766ع - 27 جولاء 1844ع) هڪ انگريز ماهر ڪيميا دان ۽ طبعيات دان هو. پاڻ گهڻو ڪري مادي ۽ ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:سائنسدان]] [[زمرو:شخصيتون]] [[زمرو:ڪلاسيڪل فزڪس]] == __LEAD_SECTION__ == '''جان ڊالٽن''' (John Dalton; {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> هن ڪيمسٽري ۾ ايٽمي نظريو متعارف ڪرايو. هن رنگ انڌا پن (color blindness) تي پڻ تحقيق ڪئي؛ نتيجي طور، پيدائشي ڳاڙهو-سائو رنگ انڌا پن جي خرابي لاءِ استعمال ٿيندڙ عام اصطلاح ڪيترن ئي ٻولين ۾ "''ڊالٽن ازم" جو نالو ڏنو ويو'' آهي.{{Efn|Including French, Russian, and Spanish, but very rarely in English.}} pzz50po56ze3j05pl6jnd6ng7t5mc0v 319980 319979 2025-06-19T07:34:30Z Ibne maryam 17680 319980 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton)؛ (6 سيپٽمبر 1766ع - 27 جولاء 1844ع) هڪ انگريز ماهر ڪيميا دان ۽ طبعيات دان هو. پاڻ گهڻو ڪري مادي ۽ ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:سائنسدان]] [[زمرو:شخصيتون]] [[زمرو:ڪلاسيڪل فزڪس]] cbd86fqb90z0dmof87pcj4bv4kbbqz5 319981 319980 2025-06-19T07:46:23Z Ibne maryam 17680 319981 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ (John Dalton; {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن جي ٻئي ڪمن ۾ گئسن جي جزوي دٻاء جو قانون ۽ رنگ انڌا پن (color blindness) تي هن جي تحقيق شامل آهي. پيدائشي ڳاڙهو-سائو رنگ انڌا پن جي خرابي جي نشاندهي لاءِ اصطلاح، "ڊالٽن ازم" ڪيترن ئي ٻولين ۾ عام طور استعمال ٿيندي آهي.{{Efn|Including French, Russian, and Spanish, but very rarely in English.}} == حوالا == ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:سائنسدان]] [[زمرو:شخصيتون]] [[زمرو:ڪلاسيڪل فزڪس]] tglkatpx8xhony3tq9jmov4dtz9i58s 319982 319981 2025-06-19T07:46:51Z Ibne maryam 17680 319982 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ (John Dalton; {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن جي ٻئي ڪمن ۾ گئسن جي جزوي دٻاء جو قانون ۽ رنگ انڌا پن (color blindness) تي هن جي تحقيق شامل آهي. پيدائشي ڳاڙهو-سائو رنگ انڌا پن جي خرابي جي نشاندهي لاءِ اصطلاح، "ڊالٽن ازم" ڪيترن ئي ٻولين ۾ عام طور استعمال ٿيندي آهي.{{Efn|Including French, Russian, and Spanish, but very rarely in English.}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:سائنسدان]] [[زمرو:شخصيتون]] [[زمرو:ڪلاسيڪل فزڪس]] akym1nnw034bn8jrjxl4fiifba07hog 319983 319982 2025-06-19T07:47:56Z Ibne maryam 17680 /* حوالا */ 319983 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ (John Dalton; {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن جي ٻئي ڪمن ۾ گئسن جي جزوي دٻاء جو قانون ۽ رنگ انڌا پن (color blindness) تي هن جي تحقيق شامل آهي. پيدائشي ڳاڙهو-سائو رنگ انڌا پن جي خرابي جي نشاندهي لاءِ اصطلاح، "ڊالٽن ازم" ڪيترن ئي ٻولين ۾ عام طور استعمال ٿيندي آهي.{{Efn|Including French, Russian, and Spanish, but very rarely in English.}} ==حوالا== {{حوالا}} [[زمرو:سائنس]] [[زمرو:ڪلاسيڪل فزڪس]] 74xh0cilc8ivn4g02qgo0fuixcvs9m1 319984 319983 2025-06-19T07:48:18Z Ibne maryam 17680 319984 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ (John Dalton; {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن جي ٻئي ڪمن ۾ گئسن جي جزوي دٻاء جو قانون ۽ رنگ انڌا پن (color blindness) تي هن جي تحقيق شامل آهي. پيدائشي ڳاڙهو-سائو رنگ انڌا پن جي خرابي جي نشاندهي لاءِ اصطلاح، "ڊالٽن ازم" ڪيترن ئي ٻولين ۾ عام طور استعمال ٿيندي آهي. ==حوالا== {{حوالا}} [[زمرو:سائنس]] [[زمرو:ڪلاسيڪل فزڪس]] nn08sz4ql9i34h3ghuixghqymywxqfb 319985 319984 2025-06-19T07:50:39Z Ibne maryam 17680 319985 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن جي ٻئي ڪمن ۾ گئسن جي جزوي دٻاء جو قانون ۽ رنگ انڌا پن (color blindness) تي هن جي تحقيق شامل آهي. پيدائشي ڳاڙهو-سائو رنگ انڌا پن جي خرابي جي نشاندهي لاءِ اصطلاح، "ڊالٽن ازم" ڪيترن ئي ٻولين ۾ عام طور استعمال ٿيندي آهي. ==حوالا== {{حوالا}} [[زمرو:سائنس]] [[زمرو:ڪلاسيڪل فزڪس]] 6rcex80t0wen5xfiefzrcft3xtuex27 319986 319985 2025-06-19T07:51:47Z Ibne maryam 17680 319986 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن جي ٻئي ڪمن ۾ گئسن جي جزوي دٻاء جو قانون ۽ پيدائشي رنگ انڌي پن (color blindness) تي هن جي تحقيق شامل آهي. ==حوالا== {{حوالا}} [[زمرو:سائنس]] [[زمرو:ڪلاسيڪل فزڪس]] 5a8ngda9qu4uz5d66t3ifimdzyagugt 319987 319986 2025-06-19T08:16:47Z KaleemBot 10779 خودڪار: [[زمرو:1844ع جون فوتگيون]] جو اضافو 319987 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن جي ٻئي ڪمن ۾ گئسن جي جزوي دٻاء جو قانون ۽ پيدائشي رنگ انڌي پن (color blindness) تي هن جي تحقيق شامل آهي. ==حوالا== {{حوالا}} [[زمرو:سائنس]] [[زمرو:ڪلاسيڪل فزڪس]] [[زمرو:1844ع جون فوتگيون]] fm9zuiohl3kuyz9zrojmqpc571l9hk2 319988 319987 2025-06-19T10:10:19Z Ibne maryam 17680 319988 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن ڪجهه عنصرن جي ايٽمي وزنن جي ابتدائي فهرست مرتب ڪئي ۽ شايع ڪئي. هن گيسن جي جزوي دٻاءُ جو قانون جو پيش ڪيو، جن کي بعد ۾ "ڊالٽن جي جزوي دٻاءُ جي قانون" جي نالي سان سڃاڻو ويو. هن موسمي تبديلين جو رڪارڊ رکڻ شروع ڪيو ۽ بعد ۾ پنهنجي مشاهدن ۽ نتيجن کي موسمياتي مشاهدن جي نالي سان هڪ ڪتاب ۾ بيان ڪيو. هن پيدائشي رنگ انڌي پن جي بيماري (colorblindness) جي پڻ جاچ ڪئي ۽ هڪ حالت دريافت ڪئي جيڪا هاڻ "ڊالٽن ازم" جي نالي سان مشهور آهي. هن شاگردن لاءِ انگريزي گرامر جي هڪ ڪتاب پڻ مرتب ڪيو. ==حوالا== {{حوالا}} [[زمرو:سائنس]] [[زمرو:ڪلاسيڪل فزڪس]] [[زمرو:1844ع جون فوتگيون]] bcgw4byt7tn920ypf72ud6dbciye5v8 319989 319988 2025-06-19T10:11:17Z Ibne maryam 17680 319989 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن ڪجهه عنصرن جي ايٽمي وزنن جي ابتدائي فهرست مرتب ڪئي ۽ شايع ڪئي. هن گيسن جي جزوي دٻاءُ جو قانون جو پيش ڪيو، جن کي بعد ۾ "ڊالٽن جي جزوي دٻاءُ جي قانون" جي نالي سان سڃاڻو ويو. هن موسمي تبديلين جو رڪارڊ رکڻ شروع ڪيو ۽ بعد ۾ پنهنجي مشاهدن ۽ نتيجن کي موسمياتي مشاهدن جي نالي سان هڪ ڪتاب ۾ بيان ڪيو. هن پيدائشي رنگ انڌي پن جي بيماري (colorblindness) جي پڻ جاچ ڪئي ۽ هڪ حالت دريافت ڪئي جيڪا هاڻ ڪيترن اي ٻولين ۾ "ڊالٽن ازم" جي نالي سان مشهور آهي. هن شاگردن لاءِ انگريزي گرامر جي هڪ ڪتاب پڻ مرتب ڪيو. ==حوالا== {{حوالا}} [[زمرو:سائنس]] [[زمرو:ڪلاسيڪل فزڪس]] [[زمرو:1844ع جون فوتگيون]] gkcun9yr2yd1hrazlj5c3w73mrztgyo 319990 319989 2025-06-19T10:14:09Z Ibne maryam 17680 319990 wikitext text/x-wiki {{Infobox scientist |name = جان ڊالٽن<br>John Dalton |image = John Dalton by Charles Turner.jpg |caption = جان ڊالٽن چارلس ٽرنر پاران، جيمس لونسڊيل جي سال 1834ع جي ميزوٽنٽ کان پوء |birth_date = {{birth date|df=yes|1766|09|06}} |birth_place = ايگلزفيلڊ، ڪمبرلينڊ، [[انگلينڊ]] |death_date = {{death date and age|df=yes|1844|07|27|1766|09|06}} |death_place = [[مانچسٽر]]، [[لنڪاشائر]]، انگلينڊ |citizenship =[[گڏيل بادشاھت]] (برطانيه) |nationality = برطانوي |ethnicity = |field = |work_institutions = |alma_mater = |notable_students = جيمز پريسڪوٽ جول |known_for = * ايٽمي ماڊل جو نظريو * گھڻن تناسب جو قانون * ڊالٽن جو جزوي دٻاءُ جو قانون * ڊالٽنزم (ڪلر بلائنڊنيس جي متعلق) |author_abbrev_bot = Jn.Dalton |author_abbrev_zoo = |influences = [[John Gough (natural philosopher)|John Gough]] |influenced = |prizes = رائل ميڊل {{small|(1826)}} |footnotes = |signature =John Dalton Signature c1827.svg }} '''جان ڊالٽن''' (John Dalton؛ {{IPAc-en|ˈ|d|ɔː|l|t|ən}} ؛ 6 سيپٽمبر 1766 - 27 جولاءِ 1844) هڪ انگريز ڪيميادان، طبيعياتدان ۽ ماهر موسميات هو. <ref>{{Cite encyclopedia|title=John Dalton|url=https://www.britannica.com/biography/John-Dalton|accessdate=6 September 2022|encyclopedia=[[Encyclopædia Britannica]]|archivedate=3 September 2022|archiveurl=https://web.archive.org/web/20220903215223/https://www.britannica.com/biography/John-Dalton}}</ref> پاڻ گهڻو ڪري مادي جي ائٽمي ماڊل جي نظرئي جي ڪري شهرت حاصل ڪيائون. هن ڪجهه عنصرن جي ايٽمي وزنن جي ابتدائي فهرست مرتب ڪئي ۽ شايع ڪئي. هن گيسن جي جزوي دٻاءُ جو قانون جو پيش ڪيو، جن کي بعد ۾ "[[ڊالٽن جو جزوي دٻاءُ جو قانون|ڊالٽن جي جزوي دٻاءُ جي قانون]]" جي نالي سان سڃاڻو ويو. هن موسمي تبديلين جو رڪارڊ رکڻ شروع ڪيو ۽ بعد ۾ پنهنجي مشاهدن ۽ نتيجن کي موسمياتي مشاهدن جي نالي سان هڪ ڪتاب ۾ بيان ڪيو. هن پيدائشي [[رنگ انڌو پن|رنگ انڌي پن جي بيماري]] (colorblindness) جي پڻ جاچ ڪئي ۽ هڪ حالت دريافت ڪئي جيڪا هاڻ ڪيترن اي ٻولين ۾ "ڊالٽن ازم" جي نالي سان مشهور آهي. هن شاگردن لاءِ انگريزي گرامر جي هڪ ڪتاب پڻ مرتب ڪيو. ==حوالا== {{حوالا}} [[زمرو:سائنس]] [[زمرو:ڪلاسيڪل فزڪس]] [[زمرو:1844ع جون فوتگيون]] cgziwlelf6pzsc671xxpyl1d734299u ناگپور 0 55725 319975 246400 2025-06-19T01:02:15Z InternetArchiveBot 13773 Rescuing 0 sources and tagging 1 as dead.) #IABot (v2.0.9.5 319975 wikitext text/x-wiki {{بهترين مضمون|سيپٽمبر 2021}} {{Infobox settlement | name = ناگپور | official_name = | native_name = <!-- Please do not add any Indic script in this infobox, per WP:INDICSCRIPT policy. --> | settlement_type = [[شهر]] | image_skyline = {{Photomontage | photo1a = BAPS Swaminarayan Temple, Nagpur.jpg | photo2a = Ganesh Visarjan at Futala by Chetan Gole.jpg | photo4b = VCA,Nagpur.jpg | photo4a = Night at Sitabuldi Nagpur.jpg | photo2b = Nagpur orange article.JPG | spacing = 2 | position = center | color_border = grey | color = white | size = 266 | foot_montage = مٿان کان هيٺ، گهڙيال جي ڪانٽن جي ابتي رخ ۾:[[سوامي نارائڻ مندر]]، [[ناگپور جون نارنگيون]]، ناگپور ۾ [[گنيش|گڻيش]] جو ميلو}}، ناگپور شهر اسڪائي لائين ۽ [[ودرڀا ڪرڪيٽ ائسوسيئيشن اسٽيڊيم]] | image_caption = | nickname = نارنگين جو شهر,<ref>{{cite web|url=http://timesofindia.indiatimes.com/city/nagpur/Nagpur-is-now-Orange-City-officially/articleshow/50967857.cms|title=Nagpur is now Orange City, officially|accessdate=25th January 2020}}</ref><br/>هندستان جي دل<ref>{{cite news |last1=Choudhari |first1=Abhishek |title=Nagpur as the heart of India |url=https://timesofindia.indiatimes.com/city/nagpur/Nagpur-as-the-heart-of-India/articleshow/18854653.cms |work=The Times of India |date= 7 March 2013}}</ref> چيتن جو شهر | pushpin_map = India Maharashtra#India | pushpin_label_position = left | pushpin_map_caption = مهاراشٽر ۾ ناگپور جي بيهڪ | coordinates = {{coord|21|9|N|79|5|E|display=inline,title}} | subdivision_type = ملڪ | subdivision_name = {{flag|India}} | subdivision_type1 = [[States and territories of India|رياست]] | subdivision_type2 = [[List of regions of India|ريجن]] | subdivision_type3 = [[List of districts of India|ضلعو]] | subdivision_name1 = [[مھاراشٽر|مهاراشٽر]] | subdivision_name2 = [[ودرڀا]] | subdivision_name3 = [[Nagpur district|ناگپور]] | established_title = بنياد پيو | established_date = 1702<ref>{{cite web|url=http://timesofindia.indiatimes.com/city/nagpur/Scrap-dealer-holds-key-to-entry-into-Bakht-Buland-Shahs-grave/articleshow/45378781.cms|title=Scrap dealer holds key to entry into Bakht Buland Shah's grave |website=The Times of India|accessdate=25 January 2020}}</ref> | founder = [[بخت بلند شاھ]] | government_type = [[Mayor–council government|ميئر ــ ڪائونسل]] | governing_body = ناگپور مييونسپل ڪارپوريشن. ناگپور ميٽروپوليٽن ريجن ڊولپمينٽ اٿارٽي | unit_pref = Metric | total_type = ناگپور شهر | area_total_km2 = 227.36 | elevation_footnotes = | elevation_m = 310 | population_total = 2,405,665 | population_as_of = 2011 | population_footnotes = <ref name="census"/> | population_density_km2 = 11,000 | population_metro = 2,497,870 | population_rank = [[هندستان]]: [[List of cities in India by population|تيرهون]] <br/> [[مھاراشٽر|مهاراشٽر]] : [[List of cities in Maharashtra|ٽيون]] <br/> [[ودرڀا]]: [[List of cities in Vidarbha|پهريون]] | population_blank1_title = ميٽرو رينڪ | population_blank1 = [[List of million-plus urban agglomerations in India|تيرهون]] | population_demonym = ناگپورڪار, ناگپوري, ناگپورائيٽ | timezone1 = [[ھندوستاني معياري وقت|IST]] | utc_offset1 = +5:30 | postal_code_type = [[Postal Index Number|پن ڪوڊ)]] | postal_code = 440 001 – 440 037<ref>{{cite web|title=Pincodes of Nagpur City|url=http://pincode.nagpuronline.in/index.html?Sort=ascending|website=Pincode.nagpuronline.in|accessdate=25 February 2017}}</ref> | area_code = [[Telephone numbers in India|+91-712]] | area_code_type = [[Telephone numbering plan|ٽيليفون ڪوڊ]] | registration_plate = [[List of RTO districts in India#MH—Maharashtra|MH31]] (Nagpur West)<br/>[[List of RTO districts in India#MH—Maharashtra|MH49]] (Nagpur East)<ref>{{cite web|url=https://www.nagpurtoday.in/rto-east-activates-new-sarthi-4-0-system-for-learning-and-driving-licenses/03021213,%20https://www.nagpurtoday.in/rto-east-activates-new-sarthi-4-0-system-for-learning-and-driving-licenses/03021213|title=RTO (East) activates new Sarthi 4.0 system for Learning and Driving Licenses|first=Nagpur|last=News|date=|website=www.nagpurtoday.in|accessdate=25 April 2019}}</ref><br/>[[List of RTO districts in India#MH—Maharashtra|MH40]] (Nagpur Rural) | blank_name_sec1 = [[جي ڊي پي]] | blank_info_sec1 = 15.10&nbsp;بلين ڊالر<ref>https://credai.org/assets/upload/report_updates/the-dawn-of-indias-future-cities-special-focus-nagpur-november-2017.pdf{{مئل ڳنڍڻو|date=June 2025 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> | blank_name_sec2 = [[Human Development Index|HDI]] | blank_info_sec2 = {{color|#090|Very High}}<ref>{{cite web|url=https://www.maharashtra.gov.in/Site/upload/WhatsNew/Economic%20Survey%20of%20Maharashtra...pdf |title=Economic Survey of Maharashtra 2014–15 |website=Maharashtra.gov.in |accessdate=25 February 2017}}</ref> | website = {{URL|www.nagpur.gov.in}} <br/> {{URL|www.nmcnagpur.gov.in}} <br/> {{URL|www.nitnagpur.org}} <br/> {{URL|www.nmrda.org}} <br/> {{URL|www.nagpurpolice.gov.in}} | | | blank2_name = {{nowrap|سرڪاري ٻولي}} | blank2_info = [[Marathi language|مرهٺي]] }} '''ناگپور''' ([[انگريزي]]: Nagpur)[[هندستان]] جي [[مھاراشٽر|مهاراشٽر]] رياست جو آباديءَ جي لحاظ کان ٽيون نمبر وڏو شهر ۽ سياري جي موسم ۾ رياست جي گاديءَ جو هنڌ آهي <ref>Maharashtra General Knowledge,Upkar Prakashan,ISBN:9789350133576</ref>. هيءُ شهر ناگ نديءَ جي ڪناري تي آباد ٿيل آهي، انهيءَ ڪري هن شهر تي ناگپور نالو پيو<ref>Encyclopedia Britannica, Online Edition, Available at https://www.britannica.com/place/Nagpur-India, Last Visited on 31st January 2020</ref>. هڪ اندازي موجب هيءُ شهر 2019 کان 2035ع دوران دنيا جو پنجون تيزيءَ سان ترقي ڪندڙ شهر ثابت ٿيندو ۽ هتي آباديءَ جي سراسري واڌ 8.41 سيڪڙو ٿيندي. هن شهر کي هندستان جي صاف سٿرن شهرن ۾ شمار ڪيو وڃي ٿو. هي شهر مهاراشٽر رياست جي مکيه معاشي ۽ سياسي مرڪزن مان هڪ آهي. هتي صحت ۽ اچ وڃ جون بهترين سهوليتون آهن. جيتوڻيڪ هتي آرام ۽ آسائش جون انيڪ سهولتون موجود آهن پر هي شهر تعصب پرستي ۽ مذهبي انتها پسنديءَ جي ڪوهيڙي ۾ وڪوڙيل آهي. هي شهر هندو قومپرست تنظيم راشٽريا سويم سيوڪ سنگه (RSS) جو ڳڙھ آهي. هتي [[ٻڌمت|ٻڌ مذهب]] سان واسطو رکندڙ دليت به ڪافي سرگرم آهن. هتي [[گوتم ٻڌ]] جو هڪ وڏو اسٽوپا ٺهيل آهي جيڪو ”ديڪشاڀومي“ جي نالي سان مشهور آهي. ناگپور جون نارنگيون سڄي هندستان ۾ مشهور آهن. شهر ۽ ان جي آسپاس [[نارنگي|نارنگين]] جا ڪئين باغ نظر اچن ٿا ۽ هتي نارنگين جو ڪاروبار وڏي پيماني تي ٿئي ٿو، انهيءَ ڪري هن کي ”نارنگين جو شهر“ پڻ سڏيو وڃي ٿو<ref>Nagpur Tourism - The Orange City, available at https://www.holidify.com/places/nagpur/, Last visited on 01 February 2020</ref>. هن شهر ۽ ان جي آسپاس چيتا گهڻي تعداد ۾ ملن ٿا ان ڪري هن شهر کي ”چيتن جو شهر“ يا ٽائيگر گيٽ وي آف انڊيا (Tiger Gateway of India) به ڪوٺيو وڃي ٿو. == تاريخ == هي شهر گوند قبيلي جي حڪمران بخت بلند شاھ 1702ع ۾ ٻڌرايو<ref>Kurup A.M., Continuity and Change in a Little Community, A Study of the Bharias of Patalkot in Madhya Perdesh, Concept Publishing Company, New Delhi </ref>. 1743ع ۾ مرهٺن جي سرواڻ رگهوجي ڀونسلي هن شهر کي فتح ڪيو. اوڻويهين صديءَ جي شروع ۾ [[انگريز|انگريزن]] ۽ مرهٺن جي وچ ۾ ٽي ڀيرا جنگيون ٿيون ۽ هي شهر مرهٺن جي هٿن مان نڪري انگريزن جي غلاميءَ ۾ اچي ويو. 1861ع ۾ انگريزن هن شهر کي پنهنجي حڪومت جي مرڪزي صوبن جي گاديءَ جو هنڌ بنايو. پهرين جنوري 1877ع تي ٽاٽا گروپ هتي پنهنجي پهرين ٽيڪسٽائيل مل جو بنياد رکيو. 1846ع ۾ هن شهر ۾ هسلوپ ڪاليج قائم ٿيو جيڪو هتان جو پهريون ڪاليج هو. 1885ع ۾ مورس ڪاليج ناگپور جو بنياد رکيو ويو جيڪو هن شهر جو پهريون سرڪاري ڪاليج هو. ”آل سينٽس ڪيٿڊرل“ انگريزن جو هن شهر ۾ ٺهرايل پهريون گرجا گهر هو ۽ ”بشاپ ڪاٽن اسڪول“ انگريزي حڪومت جو پهريون اسڪول هو. ننڍي کنڊ جي ٻين علائقن وانگيان هتي به آزاديءَ جي چڻنگ دکي پئي ۽ انگريزن سان سهڪار نه ڪرڻ جي تحريڪ جو آغاز هن شهر ۾ 1920ع ۾ ٿيو. 1923ع ۾ ناگپور يونيورسٽي قائم ٿي. 1925ع ۾ هندن جي انتها پسند تنظيم آر ايس ايس جو هن شهر ۾ بنياد وڌو ويو. 1947ع ۾ ننڍي کنڊ انگريزن جي غلاميءَ مان آزادي حاصل ڪئي. 1960ع ۾ ناگپور کي مهاراشٽر رياست جو ٻيو گاديءَ جو هنڌ بنايو ويو. هن رياست جو پهريون گاديءَ جو هنڌ [[ممبئي]] آهي. == آبادي == 2011ع واري آدمشماريءَ مطابق هن شهر جي ڪل آبادي 2405665 ماڻهن تي مشتمل آهي جن مان 1225405 مرد ۽ 1180270 عورتون آهن. ڇھ سال يا ان کان ننڍي ڄمار وارن ٻارن جو تعداد 247078 آهي جن مان 128290 ڇوڪرا ۽ 118788 ڇوڪريون آهن. ٻارڙا هن شهر جي ڪل آباديءَ جو %10.27 آهن. هتان جو سراسري خواندگيءَ جو تناسب %91.92 آهي. شهر جا %94.44 مرد ۽ %89.31 عورتون پڙهيل ڳڙهيل آهن. == ناگپور ۾ سنڌي آبادي == 1947ع ۾ [[هندستان]] جي ورهاڱي کان پوءِ [[سنڌي]] هندن کي [[سنڌ]] ڇڏي [[هندستان]] جو رخ ڪرڻو پيو. هندستان ۾ سڀ کان گهڻا سنڌي [[الھاس نگر|الهاس نگر]] ۾ رهن ٿا. ناگپور ۾ [[سنڌي ماڻھو|سنڌين]] جي آبادي 1،15،00 جي لڳڀڳ آھي<ref>{{حوالو_ويب|url=https://thesindhuworld.com/maharashtra-sindhi/|title=Maharashtra - The Sindhu World Maharashtra Sindhi Population: Sindhi Dharamshala : Panchayat|date=2021-04-01|website=thesindhuworld.com|language=en-US|access-date=2022-04-12}}</ref>. == ڌرم ۽ ٻولي == {{bar box |title= ناگپور ۾ ڌرم |titlebar=#Fcd116 |left1=ڌرم |right1=سيڪڙو |float=right |bars= {{bar percent|[[هندو]]|orange|59.46}} {{bar percent|[[ٻڌ]]|gold|25.57}} {{bar percent|[[مسلمان]]|green|11.95}} {{bar percent|[[عيسائي]]|dodgerblue|1.15}} {{bar percent|[[جين ڌرم|جين]]|pink|0.90}} {{bar percent|[[سک ازم|سک]]|darkkhaki|0.68}} {{bar percent|ٻيا†|black|0.30}} |caption=ڌرمن جي ورهاست<br/> †<small>هنن ۾ اهي ماڻهو به شامل آهن جيڪي ڪنهن به ڌرم سان واسطو نٿا رکن.</small> }} هن شهر جا اٽڪل %59.46 رهواسي [[هندو]] ڌرم سان واسطو رکن ٿا. ٻڌ ڌرم سان لاڳاپيل ماڻهن جو تناسب %25.57 آهي. هتي [[مسلمان]] به چڱي خاصي تعداد ۾ آباد آهن ۽ انهن جي آباديءَ جو ڪل تناسب %11.95 آهي. ٻين اقليتن ۾ عيسائي %1.15، جين ڌرم جا پوئلڳ %0.90، سِکَ %0.68 ۽ ٻيا %0.30 آهن. هتان جي سرڪاري ٻولي مرهٺي آهي جيڪا هتان جي اڪثريتي ٻولي پڻ آهي. [[هندي]] ۽ ورهدي ٻوليون به شهر ۽ آسپاس وارن علائقن ۾ ڳالهايون وڃن ٿيون. هتان جي مرهٺي ٻوليءَ جو لهجو مهاراشتر رياست جي ٻين علائقن واري (مرهٺي) ٻوليءَ کان ڪافي مختلف آهي. سنڌي ٻولي به ڳالهائي وڃي ٿي. ڪاروبار ۽ سرڪاري ڪاروهنوار عام طور تي [[انگريزي]]، هندي ۽ مرهٺي ٻولين ۾ ٿئي ٿو. == معيشت == [[فائل:Sitabuldi Market.JPG|thumb|ناگپور جي هڪ بازار]] [[فائل:Nagpur Reserve Bank.JPG|کاٻو|thumb|ناگپور جي مرڪزي بينڪ]] ناگپور جو شمار هندستان جي تمام تيزيءَ سان ترقي ڪندڙ شهرن ۾ ٿئي ٿو. هتي ڪروڙپتي ماڻهن جو چڱو موچارو تعداد آباد آهي. 2004ع ۾ هن شهر ۾ 5000 ڪروڙ رپين جي سيڙپڪاري ڪئي وئي. 2015ع ۾ هتان جي في شخص آمدني 123610 رپيا ۽ 2016ع ۾ مجموعي گهريلو پئداوار (GDP) اٽڪل 15.10 بلين ڊالر هئي. هتان جي ”سيتا بلدي“ مارڪيٽ شهر جو مکيه ڪاروباري مرڪز آهي جنهن کي شهر جي دل ڪوٺيو وڃي ٿو. هتي ڪيترين ئي ڏيهي ۽ پرڏيهي ڪمپنين جون مرڪزي آفيسون قائم آهن جن ۾ آئيس ڪريم، خشڪ کاڌن ۽ ميون، رڌڻ لاءِ تيار کاڌن، مرچ مصالحن ۽ آيوويدڪ دوائن جون ڪمپنيون شامل آهن. ناگپور جو شهر ۽ ان جي آسپاس جا علائقا گذريل ڪئين صدين کان پنهنجي نارنگين جي باغن سبب مشهور آهن. انهيءَ ڪري هن شهر کي ”نارنگين جو شهر“ ڪوٺيو وڃي ٿو. هي شهر اڄ به هندستان ۾ نارنگين جي سڀ کان وڏي مارڪيٽ طور سڃاتو وڃي ٿو. هن شهر مان نارنگيون ڏيھ ۽ پرڏيھ موڪليون وڃن ٿيون. هي شهر ڪپھ ۽ سلڪ جي اپت ۾ به اعليٰ حيثيت رکي ٿو. هتان جا ڪاٽن جا ۽ ريشمي ڪپڙا ڪافي مشهور آهن. هتي هڪ عاليشان هوائي اڏو، ٽي ڪوئلي تي هلندڙ بجلي گهر ۽ ايشيا جو سڀ کان وڏو صنعتي زون آهي. هتان جي صنعتي زون ۾ 900 ننڍيون ۽ وچولي سائز جون صنعتون قائم آهن. هتي کاڻين کوٽڻ (Mining) جو ڪم به وڏي پيماني تي ٿئي ٿو ۽ هتان ڪوئلي ۽ ٻين معدنيات جا ذخيرا موجود آهن. هتي انفارميشن ٽيڪنالاجيءَ جي وڏين وڏين ڪمپنين جون آفيسون پڻ موجود آهن. == آبهوا == هتان جي موسم سال جو گهڻو حصو خشڪ ۽ گرم رهي ٿي. جون جي مهيني ۾ 163 ملي ميٽرن تائين [[برسات]] وسي سگهي ٿي جڏهن ته [[جُولاءِ|جولاءِ]] ۾ اها وڌي 294 ملي ميٽر ٿي سگهي ٿي. هتي سڀ کان گهڻي برسات (304 ملي ميٽر) 14 جولاءِ 1994ع تي پئي. هتي اونهاري جي موسم ۾ تمام گهڻي گرمي ٿئي ٿي، خاص طور تي مئي جو مهينو تمام گهڻو گرم ٿيندو آهي. سيارو [[نومبر]] کان [[جنوري|جنوريءَ]] تائين هلي ٿو جنهن ۾ گرميءَ جو درجو عام طور تي 10<sup>0</sup>C کان هيٺ رهي ٿو. 19 مئي 2016ع هتان جو سڀ کان گرم ڏينهن هو جڏهن هتي گرميءَ جو درجو 48<sup>0</sup>C رڪارڊ ڪيو ويو. هتان جو ٿڌي ۾ ٿڌو ڏينهن 29 ڊسمبر 2018ع هو، ان ڏينهن هتي جو گرمي پد 3.5<sup>0</sup>C رڪارڊ ڪيو ويو<ref>[http://www.mherrera.org/temp.htm ِExtreme Temperatures around the World], Last visited on 2nd February 2020</ref>. == تعليم == [[فائل:RSTM Nagpur University.jpg|thumb|کاٻو|آر ايس ٽي ايم ناگپور يونيورسٽي ڪئمپس]] [[فائل:College of Agriculture, Nagpur.jpg|thumb|زرعي ڪاليج, ناگپور]] ناگپور هندستان ۾ تدريس ۽ تعليم جو هڪ وڏو مرڪز آهي. هتي انجنيئرنگ، ٽيڪنالاجي، ميڊيڪل، زراعت، قانون ۽ ٻين شعبن ۾ اعليٰ تعليم حاصل ڪرڻ جا جوڳا انتظام موجود آهن. هتي رياست جون چار وڏيون يونيورسٽيون قائم آهن: # ناگپور يونيورسٽي 1923ع ۾ قائم ٿي جنهن کي اڄڪلھ ”'''راشٽراسنت تڪادوجي مهاراج ناگپور يونيورسٽي'''“ (Rashtrasant Tukadoji Maharaj Nagpur University) يا RTMNU ڪوٺيو وڃي ٿو. هن يونيورسٽيءَ سان رياست جا 600 ڪاليج سلهاڙيل آهن. # '''مهاراشٽر اينيمل اينڊ فشريز سائنسز يونيورسٽي''' (Maharashtra Animal and Fishery Sciences University) # '''ڪويڪلا ڪاليداس سنسڪرت يونيورسٽي''' (Kavikulaguru Kalidas Sanskrit University) # '''مهاراشٽر نيشنل لا يونيورسٽي''' (Maharashtra National Law University) مٿين يونيورسٽين کان علاوه هتي هيٺيون ٻه اوپن (Open) يونيورسٽيون به قائم ڪيون ويون آهن: * اندرا گانڌي نيشنل اوپن يونيورسٽي * يشونترائو چاوان مهاراشٽر يونيورسٽي (Yashwantrao Chavan Maharashtra Open University). هتي 1885ع ۾ مورس ڪاليج (Morris College) کوليو ويو جنهن کي هاڻي وسنترائو نائڪ گورنمينٽ انسٽيٽيوٽ آف آرٽس اينڊ سوشل سائنسز (Vasantrao Naik Government Institute of Arts and Social Sciences) سڏيو وڃي ٿو. هيءُ هتان جي پراڻن ڪاليجن مان هڪ آهي. هتان جو هڪ ٻيو پراڻو تعليمي ادارو ”ڪاليج آف ايگريڪلچر“ آهي جيڪو انگريزن 1906ع ۾ قائم ڪيو. هيءُ شهر جي پنجن زرعي ڪاليجن مان هڪ آهي. هن شهر ۾ چار ميڊيڪل ڪاليج، اٺن کان وڌيڪ انجنيئرنگ ڪاليج ۽ ٻه مينيجمينٽ سائنسز جا ڪاليج موجود آهن. ان کان علاوه بزنس مينيجمينٽ، ڪامرس ۽ ٻين شعبن جي اعليٰ تعليم حاصل ڪرڻ لاءِ ڪاليج موجود آهن. هتي سرڪاري ۽ خانگي اسڪولن جو هڪ ڄار وڇايل آهي، جتي هتان جا نونهال علم جي اڃ اجهائين ٿا. مٿين تعليمي سهولتن سان گڏوگڏ هتي ڪيترائي سکيا جا ادارا قائم ٿيل آهن، جن ۾ ڪپھ جو مرڪزي تحقيقي ادارو، قومي سول ڊفينس ڪاليج، کٽن ميون جو تحقيقاتي ادارو، ماحولياتي انجنيئرنگ جو قومي تحقيقاتي ادارو، نيشنل پاور ٽريننگ انسٽيٽيوٽ، سڌن ٽيڪسن جي قومي اڪيڊمي (National Academy of Direct Taxes) ۽ ٻيا اهم قومي ادارا شامل آهن. == ثقافتي سرگرميون == هن شهر ۾ ڪيتريون ئي ثقافتي ۽ ادبي تنظيمون ڪم ڪري رهيون آهن. ”ودرڀا ساهتيه سنگه“ (Vidarbha Sahitya Sangh)نالي ادبي تنظيم مرهٺي ٻوليءَ جي ترقيءَ لاءِ ڪم ڪري ٿي. هن شهر ۾ سال ۾ ٻه ڀيرا مرهٺي ادبي ڪانفرنس منعقد ڪئي وڃي ٿي. ”ودرڀا راشترڀاشا پرچار سميتي (Vidarbha Rashtrabhasha Prachar Samiti) ۽ ”ودرڀاهندي ساهتيه سملان“ (Vidarbha Hindi Sahitya Sammelan) هندي ٻوليءَ جي بقا، ترقي ۽ واڌاري لاءِ ڪن ڪندڙ تنظيمون آهن. هتي گهٽ ذات وارين قومن ۽ قبيلن لاءِ ڪم ڪندڙ تنظيم ”آدم سمويڌان سنراڪشن سميتي (Aadim Samvidhan Sanrakshan Samiti) جي مرڪزي آفيس قائم آهي. ناگپور جو ڏکڻ مرڪزي ثقافتي مرڪز شهر ۾ لوڪ رقص ۽ هتان جي هٿ جي هنرن، پوشاڪ ۽ رهڻيءَ ڪرڻيءَ بابت ميلا منعقد ڪرائيندو آهي. هتي مهاراشٽر سرڪار پاران ”ڪاليداس ميلو“ لڳايو ويندو آهي. راڳ رنگ ۽ رقص جو هي ميلو سڄو هفتو هلندو آهي ۽ هن ۾ ملڪ جا چوٽيءَ جا ڪلاڪار پنهنجي فن جو مظاهرو ڪندا آهن. ساڳئي قسم جو ميلو ناگپور جي ميونسپل ڪارپوريشن پاران پڻ ملهايو ويندو آهي. ناگپور جو مرڪزي عجائب گهر 1863ع ۾ قائم ٿيو جنهن ۾ هن شهر ۽ ان جي آسپاس وارن علائقن جا نوادرات رکيل آهن. ٽي ڀائر غلام علي (ڪوٽوال)، محمد سعادالدين (صوبيدار) ۽ محمد صلاح الدين (ڪوٽوال ۽ وزير) اردوءَ ۽ فارسيءَ جا مشهور شاعر ٿي گذريا آهن. هو اصل ۾ هريانه رياست جي شهر جهاجهر جا رهاڪو هئا جيڪي مهاراجا رگهوجي باپو صاحب ڀونسلي ٽئين جي دور ۾ ناگپور ۾ اچي رهيا هئا. هنن ناگپور جي مومن پورا علائقي ۾ ”جهاجهر باغ“ جو بنياد رکيو هو. هنن پنهنجي لاءِ هڪ عاليشان محل جوڙايو هو جنهن کي ”آئينه محل“ جي نالي سان سڃاتو وڃي ٿو. هنن هتي هڪ مسجد به تعمير ڪرائي هئي. حڪومت شهر جي اتر اوله ۾ ڍنڍ جي ڪناري تي هڪ سفاري پارڪ به قائم ڪيو آهي. هتي دليت قوم جي شهيدن جو هڪ عظيم الشان يادگار به شهر جي سونهن وڌائڻ جو سبب آهي. هتان جو ”[[لتا منگيشڪر]] ميوزيڪل گارڊن“ پنهنجي نوعيت جو هڪ انوکو باغ آهي. هن باغ ۾ 2500 ماڻهن جي گنجائش آهي. هن باغ ۾ ڪيترائي ڦوهارا لڳل آهن جن مان مختلف سازن جا آواز پيا نڪرندا آهن. هن باغ ۾ مختلف قسمن جا گل ۽ ٻوٽا پوکيل آهن جن جي سونهن ۽ هٻڪار من کي موهي وجهندي آهي. شهر جي مرڪز کان پنج ڪلوميٽر پري ”انبازري ڍنڍ“ قدرتي حسن جو هڪ سهڻو مثال آهي. هن ڍنڍ جي چوڌاري انبن جي وڻن جون قطارون آهن. مرهٺي ٻوليءَ ۾ انب کي انبا چئبو آهي، انڪري هن ڍنڍ کي انبازري يعني انبن واري ڍنڍ سڏيو وڃي ٿو. ڍنڍ جو سير ڪرڻ لاءِ ٻيڙيون موجود آهن. ڍنڍ جي ڪناري تي ٻارن جا جهولا ۽ ٻيون شيون رکيل آهن. هڪ وڏو پاڻيءَ جو ڦوهارو به موجود آهي. == مذهبي جايون ۽ ميلا == [[فائل:Diksha Bhumi.jpg|thumb|گوتم ٻڌ جو اسٽوپا (ديڪشا ڀومي)]] [[فائل:Adassa Mandir Nagpur.jpg|thumb|ناگپور جو هڪ مندر]] هتي مهاتما گوتم ٻڌ جو هڪ وڏو اسٽوپا سياحن جي دلچسپيءَ جو مرڪز رهندو آهي. هن گنبند نما اسٽوپا کي ”ديڪشاڀومي“ (Deekshabhoomi) يا ”ڌما چڪرا“ ڪوٺيو وڃي ٿو. هن اسٽوپا جي بلندي 120 فوٽ آهي<ref>https://www.holidify.com/places/nagpur/sightseeing-and-things-to-do.html،{{مئل ڳنڍڻو|date=October 2023 |bot=InternetArchiveBot |fix-attempted=yes }} Last visited on 4th February 2020.</ref>. هن شهر ۾ لڳڀڳ 30 جين مندر تعمير ٿيل آهن. گنيش مندر هتان جو سڀ کان مشهور مندر آهي. رام مندر ۽ لڪشمي ديويءَ جو منارو به هتان جي اهم مذهبي عمارتن ۾ شمار ٿين ٿا. هتي عيسائين جا گرجا گهر هتي جيڪي اهم مذهبي تقريبون منعقد ٿين ٿيون تن ۾ رام نوامي، عيد ميلادالنبي، يوم عاشوره، گرونانڪ جيانتي، مهاوير جيانتي، درگا پوجا، چيتي چنڊ ۽ ٻيون تقريبون شامل آهن. هتي ڏکڻ هندستان جا به ڪيترائي مندر ٺهيل آهن. شهر ۾ پارسي مذهب سان واسطو رکندڙ ماڻهو هر سال پارسي نئون سال ملهائيندا آهن. هتي ”ڪالي“ ۽ ”پيلي“ بد روحن جو ڏڻ به ملهايو وڃي ٿو. == آمدورفت == [[فائل:Nagpur Railway Station Stitch.jpg|thumb|upright=1|ناگپور جنڪشن ريلوي اسٽيشن بلڊنگ]] [[فائل:NagpurBus.JPG|ناگپور جي بس سروس|کاٻو|thumb]] [[فائل:NagpurAirport.JPG|thumb|کاٻو|ناگپور جو بين الاقوامي هوائي اڏو]] ناگپور جو شهر روڊ، ريل ۽ هوائي سفر وسيلي ملڪ جي ٻين حصن سان ڳنڍيل آهي. هتي ريلوي اسٽيشن 1867ع ۾ قائم ٿي. انهيءَ ريلوي اسٽيشن ”ممبئي ــ ڀوسوال ــ ناگپور“ واري ريلوي پٽڙيءَ جو حصو آهي. ناگپور کان ڪلڪتي لاءِ ريل گاڏيون 1881ع ۾ هلڻ شروع ٿيون. اڄڪله ناگپور ريلوي اسٽيشن تي 260 ريل گاڏيون بيهن ٿيون. هنن ريل گاڏين وسيلي اٽڪل 1.6 لک مسافر ريل جو سفر ڪن ٿا. ناگپور اسٽيشن جي موجوده عمارت جو افتتاح 15 جنوري 1925ع ۾ ان وقت جي گورنر سر فرانڪ ڪيو. هن مکيه ريلوي اسٽيشن کان علاوه جيڪي ٻيون ريلوي اسٽيشنون هن شهر ۾ آهن تن ۾ اجني ريلوي اسٽيشن، اتواري ريلوي اسٽيشن، موتي باغ، ڪلمنا ۽ گوڌاني ريلوي اسٽيشن شامل آهن. ناگپور ــ اجني ريلوي سيڪشن هندستان جي سڀ کان ننڍي ريلوي لائين آهي جنهن جي ڊيگه فقط 3 ڪلوميٽر آهي. شهر ۾ ميٽرو ريل سروس پڻ شروع ڪئي وئي آهي. هن سروس جو افتتاح 7 مارچ 2019ع تي وزيراعظم نريندر مودي ڪيو. هي شهر ملڪ جي اهم شاهراهن جي سنگم تي واقع آهي. هن شهر مان جيڪي اهم روڊ نڪرن ٿا تن جي لسٽ هيٺ ڏجي ٿي: * سري نگر ڪنياڪماري روڊ (NH-44) * ممبئي ــ ڪلڪتا روڊ (NH-53) * ناگپور ــ بمنبور (گجرات) (NH-47) * آگرا ـ متارا، سريلنڪا (AH-43) * کڙڪپور ــ ڌول (AH-46) ممبئي ـ اورنگ آباد ـ ناگپور روڊ رياستي ۽ مرڪزي حڪومت کان منظور ٿي چڪو آهي. ان کان علاوه 800 ڪلوميٽر ڊگهو ممبئي ـ ناگپور ايڪسپريس وي به منظور ٿي چڪو آهي. ٻيا به ڪيترائي روڊ ۽ رستا هن شهر کي ٻين شهرن سان ڳنڍين ٿا. هتي هڪ بين الاقوامي هوائي اڏو به آهي جتان روزانو 300 کان وڌيڪ ڏيهي ۽ پرڏيهي اڏامون اچن ۽ وڃن ٿيون. == رانديون == {{wide image|Panoramic view of VCA stadium,nagpur.jpg|1200px|<center>ناگپور جي نئين ڪرڪيٽ اسٽيڊيم جو هڪ نظارو}} ناگپور هندستان جي انهن چند شهرن مان هڪ آهي جتي هڪ کان وڌيڪ بين الاقوامي ڪرڪيٽ اسٽيڊيم آهن. پراڻو ڪرڪيٽ اسٽيڊيم ناگپور جي سول لائين واري علائقي ۾ آهي جڏهن ته نئون اسٽيڊيم وارڌا روڊ تي موجود آهي جنهن جو افتتاح 2008ع ۾ ٿيو<ref>http://search.rediff.com/cricket/2008/nov/04nagpur.htm, Last Visited on 4th February 2020</ref>. نئين ڪرڪيٽ اسٽيڊيم ۾ 45000 ماڻهن جي ويهڻ جي گنجائش آهي. هتي هاڪي ۽ فوٽ بال جا ميدان به موجود آهن. هتي بيڊمنٽن ۽ ٽيبل ٽينس جا ٽورنامينٽ منعقد ٿين ٿا. شهر جي اسپورٽس ڪامپليڪس ۾ جمناسٽڪ جون سهولتون موجود آهن. == حوالا == {{حوالا|2}} [[زمرو:ناگپور|ناگپور]] [[زمرو:GND سان سڃاڻپ ڪندڙ وڪيپيڊيا مضمون]] [[زمرو: ھندستان جا شھر، وسنديون ۽ واھڻ]] cr0hzvmxg7asad5dt5uaht0dmvntcjr راني مکرجي 0 71330 319977 315038 2025-06-19T04:27:40Z KaleemBot 10779 خودڪار: [[زمرو:ويهين صدي جون ڀارتي اداڪارائون]] جو اضافو + ترتيب 319977 wikitext text/x-wiki راني مُکرجي (انگريزي: Rani Mukerji)، (پيدائش 21 [[مارچ]] 1978ع)، ھندي فلمن ۾ ڪم ڪندڙ ھندوستاني اداڪارا. کيس 2000ع جي ڏھاڪي دوران سڀني کان وڌيڪ مقبول ۽ گھڻي کان گھڻو پئسو وٺندڙن ۾ ڳڻيو ويو. کيس ست فلم فيئر ايوارڊ سميت ڪيتريون ئي مڃتائون مليون آھن.<ref>{{حوالو_ويب|url=https://web.archive.org/web/20130217035138/http://www.outlookindia.com/article.aspx?228160|title=Queen Of Hearts {{!}} Namrata Joshi|date=2013-02-17|website=web.archive.org|access-date=2021-12-07}}</ref><ref>{{حوالو_ويب|url=https://www.vervemagazine.in/people/rani-mukerji-acting-is-a-tough-job|title=“Acting is a tough job!” {{!}} Verve Magazine|date=2007-08-18|website=www.vervemagazine.in|language=en-US|access-date=2021-12-07}}</ref> [[فائل:Rani Mukerji promoting Hichki in 2018 (cropped).jpg|thumb|راني مُکرجي 2018ع ۾ فلم "ھِچڪي" جي مشھوري ڪندي]] == حوالا == [[زمرو:ايڪيهين صدي جون ڀارتي اداڪارائون]] [[زمرو:بنگالي سئنيما ۾ اداڪارڻيون]] [[زمرو:بنگالي ماڻهو]] [[زمرو:ڀارتي فلمي اداڪارائون]] [[زمرو:تامل سئنيما ۾ اداڪارائون]] [[زمرو:جيوت ماڻهو]] [[زمرو:ھندي سنيما ۾ اداڪارائون]] [[زمرو:ممبئي جون اداڪارائون]] [[زمرو:ويهين صدي جون ڀارتي اداڪارائون]] [[زمرو:1978ع جون پيدائشون]] hm570ibszwwg3oo6bvdzdqj29d8c46q ڪيميائي مرڪب 0 79794 319897 319851 2025-06-18T13:29:45Z Ibne maryam 17680 319897 wikitext text/x-wiki {{Short description|Substance composed of multiple elements that are chemically bonded}} {{Multiple image | direction = vertical | image1 = 2006-02-13 Drop-impact.jpg | image2 = Water-3D-balls.png | footer = خالص [[پاڻي]] (H2O) ڪيميائي مرڪب جو هڪ مثال آهي. ماليڪيول جو بال-۽-اسٽڪ ماڊل ٻن حصن [[هائڊروجن]] (اڇو) ۽ هڪ حصو [[آڪسيجن]] (ڳاڙهو) جي فضائي تعلق ڏيکاري ٿو. }} '''ڪيميائي مرڪب''' (Chemical Compound) اهي ڪيميائي شيون آهن جيڪا ڪيترن ئي هڪجهڙن [[ماليڪيول|ماليڪيولن]] (يا ماليڪيولر اينٽيٽيز) تي مشتمل هوندا آهن جنهن ۾ هڪ کان وڌيڪ [[ڪيميائي عنصر|ڪيميائي عنصرن]] جا [[ائٽم|ايٽم]] هوندا آهن جيڪي [[ڪيميائي بانڊ|ڪيميائي بانڊن]] سان گڏ هوندا آهن. ان ڪري صرف هڪ عنصر جي ايٽم تي مشتمل هڪ ماليڪيول، مرڪب نه آهي. هڪ مرڪب هڪ ڪيميائي عمل جي ذريعي مختلف مادي ۾ تبديل ٿي سگهي ٿو، جنهن ۾ ٻين مادي سان رابطي ۾ شامل ٿي سگھي ٿو. هن عمل ۾، ايٽم جي وچ ۾ بانڊ ٽٽجي سگهجن ٿا ۽ نوان بانڊ ٺين ٿا. مرڪب جا چار وڏا قسم آهن، جن ۾ فرق آهي ته هن جا [[ائٽم]] ڪيئن پاڻ ۾ ڳنڍيل آهن. ماليڪيولر مرڪب [[ڪوويلنٽ بانڊ|ڪوويلنٽ بانڊز]] ذريعي گڏجي رکيل آهن؛ آئني مرڪب [[آئني بانڊ|آئني بانڊن]] سان گڏ هوندا آهن؛ انٽر ميٽالڪ مرڪب [[ڌاتي بانڊ|ڌاتي بانڊن]] سان گڏ هوندا آهن؛ ڪوآرڊينيشن ڪمپليڪس ڪوآرڊينيٽ ڪوويلنٽ بانڊز ذريعي گڏجي رکيل آهن. غير اسٽوڪيوميٽرڪ مرڪب هڪ تڪراري ڪيس ٺاهيندا آهن. هڪ ڪيميائي فارمولو هڪ مرڪب جي ماليڪيول ۾، معياري ڪيميائي علامتن کي عددي سبسڪرپشن سان استعمال ڪندي، هر عنصر جي ايٽم جو تعداد بيان ڪري ٿو. ڪيتريون ئي ڪيميائي مرڪبون هڪ منفرد CAS نمبر سڃاڻپ ڪندڙ آهن جيڪي ڪيميائي ابستريڪت جي خدمتن پاران مقرر ڪيل آهن. عالمي سطح تي، 3,50,000 کان وڌيڪ ڪيميائي مرڪب (جنهن ۾ ڪيميائي مرڪبات جا مڪسچر شامل آهن) پيداوار ۽ استعمال لاءِ رجسٽرڊ ڪيا ويا آهن.<ref>{{Cite journal|last1=Wang|first1=Zhanyun|last2=Walker|first2=Glen W.|last3=Muir|first3=Derek C. G.|last4=Nagatani-Yoshida|first4=Kakuko|date=2020-01-22|title=Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories|journal=[[Environmental Science & Technology]]|volume=54|issue=5|pages=2575–2584|bibcode=2020EnST...54.2575W|doi=10.1021/acs.est.9b06379|pmid=31968937|doi-access=free|hdl-access=free|hdl=20.500.11850/405322}}</ref> ==تصور جي تاريخ== ==خاصيتون== ==قسمون== ==لاڳاپا ۽ قوتون== ==ڪيميائي عمل== ==پڻ ڏسو== * [[مڪسچر|آميزو]] * ڪيميائي ساخت * مرڪبن جي فهرست ==خارجي لنڪس== {{wiktionarypar|chemical compound}} {{Commons category|Chemical compounds}} * {{Citation|author=Robert Siegfried|title=From elements to atoms: a history of chemical composition|date=1 October 2002|publisher=American Philosophical Society|isbn=978-0-87169-924-4}} {{Branches of chemistry}} {{Natural science}} {{Authority control}} [[Category:Chemistry]] [[Category:Chemical compounds| ]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي شيون]] [[زمرو:ڪيميائي مرڪب]] [[زمرو:ڪيميائي اصطلاحون]] o0jgigd853l1scfs731d6cmaijq8a4j پن بجلي 0 83061 319976 319845 2025-06-19T02:13:18Z InternetArchiveBot 13773 Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.5 319976 wikitext text/x-wiki {{short description|Electricity generated by hydropower}} [[File:ThreeGorgesDam-China2009.jpg|upright=1.35|thumb|وسطي چين ۾ ٿري گورجز ڊيم، سڄي دنيا ۾ بجلي جي پيداوار جو سڀ کان وڏو پلانٽ آهي.]] '''پڻ بجلي''' (Hydroelectricity)، هائيڊرو اليڪٽرڪ پاور، پاڻي جي طاقت مان پيدا ٿيندڙ [[بجلي]] آهي (پاڻيء جي [[امڪاني توانائي]] کي [[حرڪي توانائي]] ۾ تبديل ڪندي). پن بجلي دنيا جي بجلي جو 15 سيڪڙو (2023ع ۾ تقريبن 4,210 ٽريلين واٽ-آور) فراهم ڪري ٿي،<ref>{{Cite web|url=https://ember-climate.org/insights/research/global-electricity-review-2024/|title=Global Electricity Review 2024|date=2024-05-07|website=Ember|language=en-US|access-date=2024-09-02}}</ref> جيڪو ٻين سڀني قابل تجديد ذريعن کان پيدا ٿيل بجلي ۽ ايٽمي توانائي جي ڪل مقدار، کان به وڌيڪ آهي. پن بجلي وڏي مقدار ۾ گهٽ ڪاربن جي آلودگي سان بجلي فراهم ڪري سگهي ٿي ۽ طلب ​​تي، ان کي محفوظ ۽ صاف بجلي جي فراهمي جي نظام ٺاهڻ لاءِ هڪ اهم عنصر بڻائي ٿو. هڪ هائيڊرو اليڪٽرڪ پاور اسٽيشن، جن جي تعمير ۾ هڪ ڊيم ۽ اچي جاء تي ذخيرو (مصنوعي ڍنڍ) شامل آهي، پن بجلي جي پيداور جو هڪ لچڪدار ذريعو آهي، جئين ته بجلي جي مختلف طلب جي جواب ۾، بجلي جي پيداوار کي سيڪنڊن يا منٽن ۾ وڌائي يا گهٽائي سگهجي ٿو. هڪ ڀيرا تعمير کانپوء، اها سڌي سنئون آلودگي يا فضلو پيدا نٿو ڪري ۽ تقريبن هميشه فوسل ايندھن (ڪوئلو، قدرتي گئس ۽ پيٽرول) تي هلندڙ توانائي پلانٽس جي ڀيٽ ۾ گهٽ گرين هائوس گئس خارج ڪري ٿو.<ref name="REN21-20112">[http://www.ren21.net/Portals/0/documents/Resources/GSR2011_FINAL.pdf Renewables 2011 Global Status Report, page 25, Hydropower], ''[[REN21]]'', published 2011, accessed 2016-02-19.</ref> پڻ جڏهن برساتي ٻيلن واري، هيٺاهين زمين ۾ تعمير ڪيو ويندو آهي، برساتي ٻيلا ٻڏي وڄن ٿا ۽ گرين هائوس گيسن جي وڏي مقدار خارج ٿي سگهي ٿي.<ref>{{Cite journal|last1=de Faria|first1=Felipe A M|last2=Jaramillo|first2=Paulina|last3=Sawakuchi|first3=Henrique O|last4=Richey|first4=Jeffrey E|last5=Barros|first5=Nathan|date=2015-12-01|title=Estimating greenhouse gas emissions from future Amazonian hydroelectric reservoirs|journal=Environmental Research Letters|volume=10|issue=12|pages=124019|bibcode=2015ERL....10l4019D|doi=10.1088/1748-9326/10/12/124019|issn=1748-9326|doi-access=free}}</ref> هائيڊرو اليڪٽرڪ ڪمپليڪس جي تعمير جا ماحولياتي اثر، خاص طور تي قابلِ زراعت زمين جي نقصان ۽ آبادي جي بي گھر ٿيڻ ۾ اهم ٿي سگهن ٿا.<ref>{{Cite journal|last=Fearnside|first=Philip M.|date=1989-07-01|title=Brazil's Balbina Dam: Environment versus the legacy of the Pharaohs in Amazonia|url=https://doi.org/10.1007/BF01867675|journal=Environmental Management|language=en|volume=13|issue=4|pages=401–423|bibcode=1989EnMan..13..401F|doi=10.1007/BF01867675|issn=1432-1009|url-access=subscription|s2cid=154405904}}</ref><ref>{{Cite news|url=https://www.nytimes.com/2007/11/19/world/asia/19dam.html|title=Chinese Dam Projects Criticized for Their Human Costs|last=Yardley|first=Jim|date=2007-11-19|work=The New York Times|access-date=2023-04-21|archive-url=https://web.archive.org/web/20230421133307/https://www.nytimes.com/2007/11/19/world/asia/19dam.html|archive-date=April 21, 2023|language=en-US|issn=0362-4331|url-access=subscription|url-status=live}}</ref> اهي درياءَ جي قدرتي ماحوليات، جنهن ۾ رهائش ۽ ماحولياتي نظام کي متاثر ڪرڻ ۽ گاد ۽ ڪٽاؤ جا نمونا شامل آهن، کي به خراب ڪن ٿا. جڏهن ته ڊيم ٻوڏ جي خطرن کي گهٽائي سگهن ٿا، ڊيمن جي ناڪامي تباهي آڻي سگهي ٿي. سال 2021ع ۾، عالمي طور تي نصب ٿيل هائيڊرو پاور بجلي جي گنجائش تقريبن 1,400 گيگا واٽ تائين پهچي وئي،<ref name=":52">December 2022, "[https://www.iea.org/reports/renewables-2022 Renewables 2022]", IEA, Paris, license: CC BY 4.0.</ref> جيڪا سڀني قابلِ تجديد توانائي ٽيڪنالاجين ۾ سڀ کان وڌيڪ آهي. پن بجلي [[برازيل]]، [[ناروي]] ۽ [[چين]] جهڙن ملڪن ۾ هڪ اهم ڪردار ادا ڪري ٿي،<ref name="BP2">{{cite web|url=https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2019-full-report.pdf|title=BP Statistical Review of World Energy 2019|publisher=BP|access-date=28 March 2020}}</ref> پر جاگرافيائي حدون ۽ ماحولياتي مسئلا هن کي محدود ڪندا آهن.<ref>{{cite news|url=https://www.bbc.com/news/science-environment-46098118|title=Large hydropower dams not sustainable in the developing world|date=5 November 2018|work=BBC News|access-date=27 March 2020}}</ref> ساحلي علائقن ۾ سامونڊي لهرن جي پاور (Tidal Power) استعمال ٿي سگهجي ٿي. چين سال 2022ع ۾ پنهنجي توانائي وسيلن ۾ 24 گيگا واٽ شامل ڪيو، اهو عالمي هائيڊرو پاور گنجائش ۾ اضافي جو تقريبن ٽي چوٿون 3/4 حصو آهي. [[يُورَپ|يورپ]] پنهنجي توانائي وسيلن ۾ ٻه گيگا واٽ (سال 1990ع کان پوءِ علائقي لاءِ سڀ کان وڏي مقدار) بجلي شامل ڪئي. ساڳئي وقت، عالمي سطح تي، سال 2022ع ۾ هائيڊرو پاور جي پيداوار 70 ٽيرا واٽ-آور (%2) وڌي وئي ۽ ٻين سڀني ٽيڪنالاجين کي گڏ ڪري، سڀ کان وڏو [[قابل تجديد توانائي]] جو ذريعو رهي ٿو.<ref>{{cite web|url=https://www.iea.org/energy-system/renewables/hydroelectricity|title=Hydroelectricity|date=28 April 2024|website=IEA – International Energy Agency}}</ref> ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== {{Commons category|Hydroelectricity}} *[https://www.hydroreform.org/ Hydropower Reform Coalition] {{Webarchive|url=https://web.archive.org/web/20240918133752/https://hydroreform.org/ |date=2024-09-18 }} * *[https://web.archive.org/web/20110501225851/https://www.esha.be/ European Small Hydropower Association] *[https://www.iec.ch/dyn/www/f?p=103:7:0::::FSP_ORG_ID,FSP_LANG_ID:1228,25 IEC TC 4: Hydraulic turbines] (International Electrotechnical Commission - Technical Committee 4) IEC TC 4 portal with access to scope, documents and [http://tc4.iec.ch/index-tc4.html TC 4 website] {{Webarchive|url=https://web.archive.org/web/20150427003621/http://tc4.iec.ch/index-tc4.html |date=2015-04-27 }} {{Authority control}} [[زمرو:توانائي]] [[زمرو:ماحوليات]] [[زمرو:قابل تجديد توانائي]] [[Category:Bright green environmentalism]] [[Category:Hydroelectricity| ]] [[Category:Landscape]] [[Category:Sustainable technologies]] ==حوالا== {{حوالا}} fays6s0xojr257r5xzdoia3gmgmdlr2 ڪيميائي وجود 0 83086 319899 2025-06-18T13:54:26Z Ibne maryam 17680 نئون صفحو: [[ڪيميا]] ۽ [[طبيعيات]] ۾، هڪ '''ماليڪيولي وجود''' (molecular entity) يا ڪيميائي وجود کان مراد؛ "ڪو به جزو طور يا آئسوٽوپ طور تي الڳ ايٽم، ماليڪيول، آئن (Ion)، آئن جو جوڙو، ريڊيڪل، ريڊيڪل آئن وغيره آهي، جيڪا الڳ وجود طور سڃاڻپ جي لائق وجود رکڻ ٿا". هڪ ماليڪيولي وجود ڪو به واحد وجو... 319899 wikitext text/x-wiki [[ڪيميا]] ۽ [[طبيعيات]] ۾، هڪ '''ماليڪيولي وجود''' (molecular entity) يا ڪيميائي وجود کان مراد؛ "ڪو به جزو طور يا آئسوٽوپ طور تي الڳ ايٽم، ماليڪيول، آئن (Ion)، آئن جو جوڙو، ريڊيڪل، ريڊيڪل آئن وغيره آهي، جيڪا الڳ وجود طور سڃاڻپ جي لائق وجود رکڻ ٿا". هڪ ماليڪيولي وجود ڪو به واحد وجود آهي، ان جي نوعيت کان سواءِ، ڪنهن به قسم جي ڪيميائي ذرڙي کي مختصر طور تي ظاهر ڪرڻ لاءِ استعمال ڪيو ويندو آهي جيڪو ڪجهه عمل جي مثال ڏئي سگهي ٿو: مثال طور، ايٽم، ماليڪيول، آئن، وغيره سڀ هڪ ڪيميائي رد عمل مان گذري سگهن ٿا. ڪيميائي جنس ماليڪيولر وجود جي ميڪرو اسڪوپڪ برابر آهي ۽ ماليڪيولر وجودن جي سيٽ يا اينسمبلز جو حوالو ڏئي ٿو. خالص ۽ اطلاقي ڪيميا جي بين الاقوامي يونين (IUPAC) جي مطابق، "هڪ ماليڪيولر وجود کي بيان ڪرڻ لاءِ ضروري درستگي جي درجي تناظر تي منحصر آهي. مثال طور 'هائيڊروجن ماليڪيول' ڪجهه مقصدن لاءِ هڪ خاص ماليڪيولر وجود جي هڪ مناسب تعريف آهي، جڏهن ته ٻين لاءِ اهو ضروري آهي ته اليڪٽرانڪ حالت ۽/يا وائبريشنل حالت ۽/يا ايٽمي اسپن، وغيره کي هائيڊروجن ماليڪيول جي فرق ڪرڻ ضروري آهي." ==پوڻ ڏسو== * ڪيميائي مادي جي مقدار: هڪ طبيعي مقدار جيڪا ڪنهن مادي ۾ موجود وجودن جي انگ جي متناسب هوندي آهي. * مول: ايووگاڊرو نمبر پاران ڏنل وجودن جو مجموعو. * نوان ڪيميائي وجود * حياتياتي دلچسپي وارا ڪيميائي وجود * ذرو ==حوالا== [[زمرو:ڪيميا]] [[زمرو:ڪيميائي اصطلاحون]] ojlwmccbzgcfxiafr6lxxnme0xelu8o 319900 319899 2025-06-18T13:55:05Z Ibne maryam 17680 319900 wikitext text/x-wiki [[ڪيميا]] ۽ [[طبيعيات]] ۾، هڪ '''ماليڪيولي وجود''' (molecular entity) يا ڪيميائي وجود کان مراد؛ "ڪو به جزو طور يا آئسوٽوپ طور تي الڳ ايٽم، ماليڪيول، آئن (Ion)، آئن جو جوڙو، ريڊيڪل، ريڊيڪل آئن وغيره آهي، جيڪا الڳ وجود طور سڃاڻپ جي لائق وجود رکي ٿو". هڪ ماليڪيولي وجود ڪو به واحد وجود آهي، ان جي نوعيت کان سواءِ، ڪنهن به قسم جي ڪيميائي ذرڙي کي مختصر طور تي ظاهر ڪرڻ لاءِ استعمال ڪيو ويندو آهي جيڪو ڪجهه عمل جي مثال ڏئي سگهي ٿو: مثال طور، ايٽم، ماليڪيول، آئن، وغيره سڀ هڪ ڪيميائي رد عمل مان گذري سگهن ٿا. ڪيميائي جنس ماليڪيولر وجود جي ميڪرو اسڪوپڪ برابر آهي ۽ ماليڪيولر وجودن جي سيٽ يا اينسمبلز جو حوالو ڏئي ٿو. خالص ۽ اطلاقي ڪيميا جي بين الاقوامي يونين (IUPAC) جي مطابق، "هڪ ماليڪيولر وجود کي بيان ڪرڻ لاءِ ضروري درستگي جي درجي تناظر تي منحصر آهي. مثال طور 'هائيڊروجن ماليڪيول' ڪجهه مقصدن لاءِ هڪ خاص ماليڪيولر وجود جي هڪ مناسب تعريف آهي، جڏهن ته ٻين لاءِ اهو ضروري آهي ته اليڪٽرانڪ حالت ۽/يا وائبريشنل حالت ۽/يا ايٽمي اسپن، وغيره کي هائيڊروجن ماليڪيول جي فرق ڪرڻ ضروري آهي." ==پوڻ ڏسو== * ڪيميائي مادي جي مقدار: هڪ طبيعي مقدار جيڪا ڪنهن مادي ۾ موجود وجودن جي انگ جي متناسب هوندي آهي. * مول: ايووگاڊرو نمبر پاران ڏنل وجودن جو مجموعو. * نوان ڪيميائي وجود * حياتياتي دلچسپي وارا ڪيميائي وجود * ذرو ==حوالا== [[زمرو:ڪيميا]] [[زمرو:ڪيميائي اصطلاحون]] l38j09x2nmhbp6ijc6uqqwt80ul1mbi 319901 319900 2025-06-18T13:58:16Z Ibne maryam 17680 319901 wikitext text/x-wiki [[ڪيميا]] ۽ [[طبيعيات]] ۾، هڪ '''ماليڪيولي وجود''' (molecular entity) يا ڪيميائي وجود کان مراد؛ "ڪو به جزو طور يا آئسوٽوپ طور تي الڳ ايٽم، ماليڪيول، آئن (Ion)، آئن جو جوڙو، ريڊيڪل، ريڊيڪل آئن وغيره آهي، جيڪا الڳ وجود طور سڃاڻپ جي لائق وجود رکي ٿو". هڪ ماليڪيولي وجود ڪو به واحد وجود آهي، ان جي نوعيت کان سواءِ، ڪنهن به قسم جي ڪيميائي ذرڙي کي مختصر طور تي ظاهر ڪرڻ لاءِ استعمال ڪيو ويندو آهي جيڪو ڪجهه عمل جي مثال ڏئي سگهي ٿو: مثال طور، ايٽم، ماليڪيول، آئن، وغيره سڀ هڪ ڪيميائي رد عمل مان گذري سگهن ٿا. ڪيميائي جنس ماليڪيولر وجود جي ميڪرو اسڪوپڪ برابر آهي ۽ ماليڪيولر وجودن جي سيٽ يا اينسمبلز جو حوالو ڏئي ٿو. خالص ۽ اطلاقي ڪيميا جي بين الاقوامي يونين (IUPAC) جي مطابق، "هڪ ماليڪيولر وجود کي بيان ڪرڻ لاءِ ضروري درستگي جي درجي تناظر تي منحصر آهي. مثال طور 'هائيڊروجن ماليڪيول' ڪجهه مقصدن لاءِ هڪ خاص ماليڪيولر وجود جي هڪ مناسب تعريف آهي، جڏهن ته ٻين لاءِ اهو ضروري آهي ته اليڪٽرانڪ حالت ۽/يا وائبريشنل حالت ۽/يا ايٽمي اسپن، وغيره کي هائيڊروجن ماليڪيول جي فرق ڪرڻ ضروري آهي." ==پڻ ڏسو== * [[طبيعي مقدار|ڪيميائي مادي جي مقدار]]: هڪ طبيعي مقدار جيڪا ڪنهن مادي ۾ موجود وجودن جي انگ جي متناسب هوندي آهي. * [[مول]]: [[ايووگاڊرو جو قانون|ايووگاڊرو نمبر]] پاران ڏنل وجودن جو مجموعو. * نوان ڪيميائي وجود * حياتياتي دلچسپي وارا ڪيميائي وجود * ذرو ==حوالا== [[زمرو:ڪيميا]] [[زمرو:ڪيميائي اصطلاحون]] 93pdgi5l5xke8825mu7rmp4d0y2yr8y 319902 319901 2025-06-18T14:00:25Z Ibne maryam 17680 319902 wikitext text/x-wiki [[ڪيميا]] ۽ [[طبيعيات]] ۾، هڪ '''ماليڪيولي وجود''' (molecular entity) يا ڪيميائي وجود کان مراد؛ "ڪو به جزو طور يا آئسوٽوپ طور تي الڳ ايٽم، ماليڪيول، آئن (Ion)، آئن جو جوڙو، ريڊيڪل، ريڊيڪل آئن وغيره آهي، جيڪا الڳ وجود طور سڃاڻپ جي لائق وجود رکي ٿو". هڪ ماليڪيولي وجود ڪو به وحداني وجود آهي، جيڪا ان جي نوعيت کان سواءِ، ڪنهن به قسم جي ڪيميائي ذرڙي کي مختصر طور تي ظاهر ڪرڻ لاءِ استعمال ڪيو ويندو آهي، جيڪو ڪجهه عمل جي مثال ڏئي سگهي ٿو: مثال طور، ايٽم، ماليڪيول، آئن، وغيره سڀ هڪ ڪيميائي رد عمل مان گذري سگهن ٿا. ڪيميائي جنس ماليڪيولر وجود جي ميڪرو اسڪوپڪ برابر آهي ۽ ماليڪيولر وجودن جي سيٽ يا اينسمبلز جو حوالو ڏئي ٿو. خالص ۽ اطلاقي ڪيميا جي بين الاقوامي يونين (IUPAC) جي مطابق، "هڪ ماليڪيولر وجود کي بيان ڪرڻ لاءِ ضروري درستگي جي درجي تناظر تي منحصر آهي. مثال طور 'هائيڊروجن ماليڪيول' ڪجهه مقصدن لاءِ هڪ خاص ماليڪيولر وجود جي هڪ مناسب تعريف آهي، جڏهن ته ٻين لاءِ اهو ضروري آهي ته اليڪٽرانڪ حالت ۽/يا وائبريشنل حالت ۽/يا ايٽمي اسپن، وغيره کي هائيڊروجن ماليڪيول جي فرق ڪرڻ ضروري آهي." ==پڻ ڏسو== * [[طبيعي مقدار|ڪيميائي مادي جي مقدار]]: هڪ طبيعي مقدار جيڪا ڪنهن مادي ۾ موجود وجودن جي انگ جي متناسب هوندي آهي. * [[مول]]: [[ايووگاڊرو جو قانون|ايووگاڊرو نمبر]] پاران ڏنل وجودن جو مجموعو. * نوان ڪيميائي وجود * حياتياتي دلچسپي وارا ڪيميائي وجود * ذرو ==حوالا== [[زمرو:ڪيميا]] [[زمرو:ڪيميائي اصطلاحون]] 5v6m843wzjizcdijh7y0zvt1jysybak 319903 319902 2025-06-18T14:05:01Z Ibne maryam 17680 319903 wikitext text/x-wiki [[ڪيميا]] ۽ [[طبيعيات]] ۾، هڪ '''ماليڪيولي وجود''' (molecular entity) يا ڪيميائي وجود کان مراد؛ "ڪو به جزو طور يا آئسوٽوپ طور تي الڳ ايٽم، ماليڪيول، آئن (Ion)، آئن جو جوڙو، ريڊيڪل، ريڊيڪل آئن وغيره آهي، جيڪا الڳ وجود طور سڃاڻپ جي لائق وجود رکي ٿو". هڪ ماليڪيولي وجود ڪو به وحداني وجود آهي، جيڪا ان جي نوعيت کان سواءِ، ڪنهن به قسم جي ڪيميائي ذرڙي کي مختصر طور تي ظاهر ڪرڻ لاءِ استعمال ڪيو ويندو آهي، جيڪو ڪجهه عمل جي مثال ڏئي سگهي ٿو: مثال طور، ايٽم، ماليڪيول، آئن، وغيره سڀ هڪ ڪيميائي رد عمل مان گذري سگهن ٿا. ماليڪيولي وجود، ڪيميائي نوع جي ميڪروسڪوپڪ برابر آهي ۽ ماليڪيولر وجودن جي سيٽ يا اينسمبلز جو حوالو ڏئي ٿو. خالص ۽ اطلاقي ڪيميا جي بين الاقوامي يونين (IUPAC) جي مطابق؛ "هڪ ماليڪيولر وجود کي بيان ڪرڻ لاءِ ضروري درستگي جي درجي تناظر تي منحصر آهي. مثال طور "هائيڊروجن ماليڪيول (H2) ڪجهه مقصدن لاءِ هڪ خاص ماليڪيولر وجود جي هڪ مناسب تعريف آهي، جڏهن ته ٻين لاءِ اهو ضروري آهي ته اليڪٽرانڪ حالت ۽/يا وائبريشنل حالت ۽/يا ايٽمي اسپن، وغيره کي هائيڊروجن ماليڪيول جي فرق ڪرڻ ضروري آهي." ==پڻ ڏسو== * [[طبيعي مقدار|ڪيميائي مادي جي مقدار]]: هڪ طبيعي مقدار جيڪا ڪنهن مادي ۾ موجود وجودن جي انگ جي متناسب هوندي آهي. * [[مول]]: [[ايووگاڊرو جو قانون|ايووگاڊرو نمبر]] پاران ڏنل وجودن جو مجموعو. * نوان ڪيميائي وجود * حياتياتي دلچسپي وارا ڪيميائي وجود * ذرو ==حوالا== [[زمرو:ڪيميا]] [[زمرو:ڪيميائي اصطلاحون]] epkrn1h9yg6esmb5btt6o1mi40qa9by ايووگاڊرو مستقل 0 83087 319904 2025-06-18T14:12:45Z Ibne maryam 17680 نئون صفحو: '''ايووگاڊرو مستقل'''، عام طور تي NA يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن... 319904 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي NA يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N0 جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. [[زمرو:ڪيميا]] tac4twf6v3hdgyeorc0yx9v1qr8m0fi 319905 319904 2025-06-18T14:14:10Z Ibne maryam 17680 319905 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. [[زمرو:ڪيميا]] 2w4je2fp751vdvasvznheyt46rmr1uk 319907 319905 2025-06-18T15:17:10Z Abdullah1601 18012 319907 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[Amedeo Avogadro]], the constant's namesake | label1 = {{longitem|Common symbols}} | data1 = {{mvar|N{{sub|{{ni|A}}}}}}, {{mvar|L}} | label2 = [[International System of Units|SI&nbsp;unit]] | data2 = [[mole (unit)|mol]]{{sup|−1}} | header3 = Exact value | label4 = {{nobold|reciprocal mole|reciprocal moles]]}} | data4 = {{physconst|NA|unit=no|ref=no}} }} The '''Avogadro constant''', commonly denoted {{math|'''''N''{{sub|A}}'''}}<ref name=bipm9th/> or {{math|'''''L'''''}},<ref name=iupac1996/> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name=ciaaw/> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] qhqy07j72n73qolqtk1gya7q3ua31xr 319908 319907 2025-06-18T15:30:50Z Abdullah1601 18012 319908 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. | label1 = Common symbols | data1 = N (A) | label2 = [[SI Unit]] | data2 = mol{{sup|−1}} | header3 = Exact value | label4 = reciprocal moles | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted {{math|'''''N''{{sub|A}}'''}}<ref name=bipm9th/> or {{math|'''''L'''''}},<ref name=iupac1996/> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name=ciaaw/> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 2h38ik4fcoxrpyq89vxqc7xi72vmwej 319909 319908 2025-06-18T15:43:24Z Abdullah1601 18012 319909 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. | label1 = عام علامتون | data1 = N (A) | label2 = [[اڪائين جو الاقوامي نظام| SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted {{math|'''''N''{{sub|A}}'''}}<ref name=bipm9th/> or {{math|'''''L'''''}},<ref name=iupac1996/> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name=ciaaw/> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] dtwty9ered4putx6kptw5t76lonh021 319910 319909 2025-06-18T15:46:25Z Abdullah1601 18012 319910 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. | label1 = عام علامتون | data1 = N (A) | label2 = [[اڪائين جو الاقوامي نظام| SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted N A 1023 × 6.02214076 |e=23|u=mol-1 {{math|'''''N''{{sub|A}}'''}}<ref name=bipm9th/> or {{math|'''''L'''''}},<ref name=iupac1996/> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name=ciaaw/> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 017dpr90ga9vmgj0mvtjkihng55nfqt 319911 319910 2025-06-18T15:51:16Z Abdullah1601 18012 319911 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. | label1 = عام علامتون | data1 = N (A) | label2 = [[اڪائين جو الاقوامي نظام| SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted N<sub>A</sub> <sup>23</sup> 10 <sup>23</sup> × 6.02214076 |e=23|u=mol-1 {{math|'''''N''{{sub|A}}'''}}<ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] mcqqz4kx3p56hc558wvbf37ox3xiq6y 319912 319911 2025-06-18T15:51:58Z Abdullah1601 18012 319912 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. | label1 = عام علامتون | data1 = N (A) | label2 = [[اڪائين جو الاقوامي نظام| SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted N<sub>A</sub> <sup>23</sup>10 <sup>23</sup> × 6.02214076 |e=23|u=mol-1 {{math|'''''N''{{sub|A}}'''}}<ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] qgc0j0ngngd37ovfv8twulmui835bhq 319913 319912 2025-06-18T15:52:36Z Abdullah1601 18012 319913 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. | label1 = عام علامتون | data1 = N (A) | label2 = [[اڪائين جو الاقوامي نظام| SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted N<sub>A</sub> <sup>23</sup>10 <sup>23</sup> × 6.02214076 × 10 |e=23|u=mol-1 {{math|'''''N''{{sub|A}}'''}}<ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] nd38pxv9m6ok4exjh6sn89ziu88gx3e 319914 319913 2025-06-18T15:53:38Z Abdullah1601 18012 319914 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. | label1 = عام علامتون | data1 = N (A) | label2 = [[اڪائين جو الاقوامي نظام| SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted N<sub>A</sub> <sup>23</sup>10 <sup>23</sup> × 6.02214076×10 × 10 |e=23|u=mol-1 {{math|'''''N''{{sub|A}}'''}}<ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] nlal10gjejtyi9v4juliefgksrgpd32 319915 319914 2025-06-18T15:54:56Z Abdullah1601 18012 319915 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. | label1 = عام علامتون | data1 = N (A) | label2 = [[اڪائين جو الاقوامي نظام| SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted N<sub>A</sub> 10 <sup>23</sup>10<sup>23</sup> × 6.02214076×10 × 10 |e=23|u=mol-1 {{math|'''''N''{{sub|A}}'''}}<ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] gy0lccj8yacs0ttimy4o6uf0snqv43t 319916 319915 2025-06-18T16:03:31Z Abdullah1601 18012 319916 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub> | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 22^ 10 × 6.022 }} The '''Avogadro constant''', commonly denoted N<sub>A</sub> 10<sup>23</sup> × 6.02214076×10 |e=23|u=mol-1 {{math|'''''N''{{sub|A}}'''}}<ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 4w820bxwc00b1ocbpw3qqs2qyk6xfwx 319917 319916 2025-06-18T16:07:11Z Abdullah1601 18012 319917 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{use dmy dates|date=October 2022|cs1-dates=l}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub> | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} The '''Avogadro constant''', commonly denoted <ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] k6ktptj7p2dq3gadt0vw8tggftk2nur 319918 319917 2025-06-18T17:47:48Z Ibne maryam 17680 319918 wikitext text/x-wiki '''ايووگاڊرو مستقل'''، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، هڪ ايس آءِ جي وضاحت ڪندڙ مستقل آهي جيڪو صحيح قدر 6.02214076×1023 mol−1 سان آهي جڏهن باهمي مولز ۾ ظاهر ڪيو ويندو آهي. اهو نموني ۾ مادي جي مقدار سان جزوي ذرڙن جي تعداد جو تناسب بيان ڪري ٿو، جتي سوال ۾ ذرات ڪنهن به نامزد ابتدائي وجود آهن، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جوڙو. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي ايووگاڊرو نمبر طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ صحيح تعداد آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ جزوي ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي ايس آءِ جي 2019 جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (12C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن ماس-يونٽ تناسب، g/Da. مستقل ۽ نمبر ٻنهي جو نالو اطالوي فزڪسسٽ ۽ ڪيمسٽ اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} The '''Avogadro constant''', commonly denoted <ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] lst229p5w9p02323uh7vw7lp6188dpy 319919 319918 2025-06-18T18:04:16Z Ibne maryam 17680 319919 wikitext text/x-wiki '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر 6.02214076×1023 mol−1 آهي جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} The '''Avogadro constant''', commonly denoted <ref name="bipm9th" /> or {{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] ap4pycaikpifhft1h6ab24u1bzjvn30 319920 319919 2025-06-18T18:05:36Z Ibne maryam 17680 319920 wikitext text/x-wiki '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر 6.02214076×1023 mol−1 آهي جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} == خاڪو == The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] ieb6mzgydcgxsrwl5h62tabtc3day71 319921 319920 2025-06-18T18:06:32Z Ibne maryam 17680 319921 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر 6.02214076×1023 mol−1 آهي جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ==ايووگاڊرو نمبر== {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} == خاڪو == The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] g4nsdaig2si8du905kgi1q4v6lgp3xx 319922 319921 2025-06-18T18:07:16Z Ibne maryam 17680 319922 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر 6.02214076×1023 mol−1 آهي جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. == خاڪو == The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] meigvcyd2oi8e6oonmaonq0bw13ii7q 319923 319922 2025-06-18T18:08:48Z Ibne maryam 17680 319923 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر 6.02214076×1023 mol−1 آهي جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] ozs4vhnuiixki7aiq5zk5bhywd31lt6 319924 319923 2025-06-18T18:10:50Z Ibne maryam 17680 319924 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] spn5cly0mvj7x2lwhk122f1nxyerghy 319925 319924 2025-06-18T18:13:04Z Ibne maryam 17680 319925 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} data4 = 10<sup>23</sup> × 6.02214076 mol{{sup|−1}} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 6iops62rnjukogqf4l20kvdyvpywcj3 319926 319925 2025-06-18T18:13:59Z Ibne maryam 17680 319926 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. 10<sup>23</sup> × 6.02214076 mol{{sup|−1}} The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] jdisfrhsadg7qpqwl0lucd4lqng3f3w 319927 319926 2025-06-18T18:15:16Z Ibne maryam 17680 319927 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. mol{{sup|−1}} , 10<sup>23</sup> × 6.02214076 mol{{sup|−1}} The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] jx3ik662d6955qh0hclc96y2jk91k8c 319928 319927 2025-06-18T18:16:37Z Ibne maryam 17680 319928 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. mol{{sup|−1}} (10<sup>23</sup> × 6.02214076) mol{{sup|−1}} The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 3iin2z9sd4bd4fk42iohd0ny1woevws 319929 319928 2025-06-18T18:18:24Z Ibne maryam 17680 319929 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. × 6.02214076 × mol{{sup|−1}} (10<sup>23</sup> × 6.02214076) mol{{sup|−1}} The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] b9s136nn6vlk1m4tmbj9n5wkq0fgvod 319930 319929 2025-06-18T18:18:50Z Ibne maryam 17680 319930 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. × 6.02214076 × mol{{sup|−1}} (10<sup>23</sup> × 6.02214076) mol{{sup|−1}} The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] h57r3vgaekpj6i5tg95jt2i42c2rq0h 319931 319930 2025-06-18T18:22:53Z Ibne maryam 17680 319931 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. × 6.02214076 × 10<sup>23</sup> 6.02214076 mol{{sup|−1}} (10<sup>23</sup> x 6.02214076) mol{{sup|−1}} The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] hi0zf9dxgl38ou81xpuczs3tbv4gwkq 319932 319931 2025-06-18T18:30:43Z Ibne maryam 17680 319932 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. 6.02214076 × 10<sup>23</sup> 6.0221407 mol{{sup|−1}} (10<sup>23</sup> x 6.022140766 ) mol{{sup|−1}} The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] ntvyrbqn1g1992p7ltlyf7vaaorkutb 319933 319932 2025-06-18T18:34:44Z Ibne maryam 17680 319933 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر {{val|6.02214076|e=23|u=mol-1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. mol{{sup|−1}} (10<sup>23</sup> 6.0221407) mol{{sup|−1}} mol{{sup|−1}} (10<sup>23</sup> x 6.022140766 ) The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 9b9a0bi2k7tr36nttr8s7xhwhas2342 319934 319933 2025-06-18T18:38:29Z Ibne maryam 17680 319934 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر mol{{sup|−1}} (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. dsd mol{{sup|−1}} (10<sup>23</sup> 6.0221407) mol{{sup|−1}} mol{{sup|−1}} (10<sup>23</sup> x 6.022140766 ) The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 9k1nuo55ya1chiqw3pypnmft0xy3hqe 319935 319934 2025-06-18T18:39:10Z Ibne maryam 17680 319935 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، جنهن جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. dsd mol{{sup|−1}} (10<sup>23</sup> 6.0221407) mol{{sup|−1}} mol{{sup|−1}} (10<sup>23</sup> x 6.022140766 ) The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] jhztmpzq4358eqje7k2vjeoowju6kvl 319936 319935 2025-06-18T18:40:01Z Ibne maryam 17680 319936 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. dsd mol{{sup|−1}} (10<sup>23</sup> 6.0221407) mol{{sup|−1}} mol{{sup|−1}} (10<sup>23</sup> x 6.022140766 ) The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] hzc11b00tn2utt4qx75dnd8bb3ou4ha 319937 319936 2025-06-18T18:41:36Z Ibne maryam 17680 319937 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن (ايٽم، آئن جا جوڙا، ماليڪيول) جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. dsd mol{{sup|−1}} (10<sup>23</sup> 6.0221407) mol{{sup|−1}} mol{{sup|−1}} (10<sup>23</sup> x 6.022140766 ) The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 601my4c6nnpk1vejtdx121czudoyuhe 319938 319937 2025-06-18T18:42:27Z Ibne maryam 17680 319938 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي. اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. dsd mol{{sup|−1}} (10<sup>23</sup> 6.0221407) mol{{sup|−1}} mol{{sup|−1}} (10<sup>23</sup> x 6.022140766 ) The '''Avogadro constant''', commonly denoted<ref name="bipm9th" />{{math|'''''L'''''}},<ref name="iupac1996" /> is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s.<ref name="SI2019"> {{cite book | last1 = Newell | first1 = David B. | last2 = Tiesinga | first2 = Eite | year = 2019 | title = The International System of Units (SI) | series = NIST Special Publication 330 | publisher = National Institute of Standards and Technology | location = Gaithersburg, Maryland | url = https://www.nist.gov/si-redefinition/meet-constants | doi = 10.6028/nist.sp.330-2019 | s2cid = 242934226 | doi-access = free }}</ref><ref name="ciaaw" /> It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}.<ref name="feynman" /><ref name="born" /> The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. The Avogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 8k29g3jthndoq51vnt0j4ixfcuw2xtu 319939 319938 2025-06-18T18:46:58Z Ibne maryam 17680 319939 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. == خاڪو == '''Avogadro constant''', commonly denoted{{math|'''''L'''''}} is an [[SI defining constant]] with an exact value of {{val|6.02214076|e=23|u=mol-1}} when expressed in [[reciprocal mole]]s. It defines the ratio of the [[particle number|number of constituent particle]]s to the [[amount of substance]] in a sample, where the particles in question are any designated elementary entity, such as [[molecule]]s, [[atom]]s, [[ion]]s, [[ion pair]]s. The numerical value of this constant when expressed in terms of the mole is known as the '''Avogadro number''', commonly denoted {{math|''N''{{sub|0}}}}. The Avogadro ''number'' is an exact number equal to the number of constituent particles in one mole of any substance (by definition of the [[Mole (unit)|mole]]), historically derived from the experimental determination of the number of atoms in 12&nbsp;[[Gram|grams]] of [[carbon-12]] (<sup>12</sup>C) before the [[2019 revision of the SI]], i.e. the gram-to-dalton mass-unit ratio, g/Da. Both the constant and the number are named after the Italian physicist and chemist [[Amedeo Avogadro]]. == تفصيل == TheAvogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 4lv35gh5s9lr6w0811p1xrr02r0yco0 319940 319939 2025-06-18T18:47:24Z Ibne maryam 17680 319940 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. == تفصيل == TheAvogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). [[زمرو:ڪيميا]] 2k0m8gpg49wi014mwgat7bxr62zqsyc 319941 319940 2025-06-18T18:48:43Z Ibne maryam 17680 /* پڻ ڏسو */ 319941 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. TheAvogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}.<ref name="okun" /> That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== [[زمرو:ڪيميا]] ==حوالا== {{حوالا}} r8l1aa6ocredyklyfh842i3m5p7s0n1 319942 319941 2025-06-18T18:49:41Z Ibne maryam 17680 319942 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. TheAvogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== [[زمرو:ڪيميا]] ==حوالا== {{حوالا}} 7kwt81m28brxc2eqnm6lxw5bk11roqj 319943 319942 2025-06-18T18:55:08Z Ibne maryam 17680 319943 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. TheAvogadro constant is used as a [[proportionality factor]] in relating the ''[[amount of substance]]'' {{math|''n''(X)}}, in a sample of a substance {{math|X}}, to the corresponding number of elementary entities {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> The ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي: * (((((Eq)))) ايووگاڊرو مستقل NA اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مسلسل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== [[زمرو:ڪيميا]] ==حوالا== {{حوالا}} 50a2xv1i7qetdz66lfo2omdqt4kwwcc 319944 319943 2025-06-18T18:57:21Z Ibne maryam 17680 319944 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي: {{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل NA اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مسلسل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== [[زمرو:ڪيميا]] ==حوالا== {{حوالا}} dfip4a4fbwi11fhcw8r9rw6mly9ro44 319945 319944 2025-06-18T18:58:29Z Ibne maryam 17680 319945 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل NA اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مسلسل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== [[زمرو:ڪيميا]] ==حوالا== {{حوالا}} nzllv0by3qlf7r1y0qrte81rqaecfgy 319946 319945 2025-06-18T19:02:32Z Ibne maryam 17680 319946 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== [[زمرو:ڪيميا]] ==حوالا== {{حوالا}} 5tc8dunt95wkpsd0mthp2796eab7cxi 319947 319946 2025-06-18T19:03:42Z Ibne maryam 17680 319947 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== [[زمرو:ڪيميا]] ==حوالا== {{حوالا}} kuvgdc2dohu9fybzcfk282m8gfb2ulc 319948 319947 2025-06-18T19:06:35Z Ibne maryam 17680 319948 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Mole concepts}} {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 63uqok7zvs9pdqchfftgbfhh47oigxo 319949 319948 2025-06-18T19:07:05Z Ibne maryam 17680 319949 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} hvgdnt3g9wep7nqtp3fjvgvg19cpcgi 319950 319949 2025-06-18T19:09:37Z Ibne maryam 17680 /* پڻ ڏسو */ 319950 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} hz5ya5xnc96m0exfztb5s9bfnagco7q 319951 319950 2025-06-18T19:11:14Z Ibne maryam 17680 319951 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 1vkcluhdq45xvceevn8cv38evh014u8 319952 319951 2025-06-18T19:17:26Z Ibne maryam 17680 319952 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). * وصف: تاريخ: ٻين مستقلن سان ڪنيڪشن: == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} ahjc3ikgmmc0iuztjz4swsvcf57zlvp 319953 319952 2025-06-18T19:19:02Z Ibne maryam 17680 319953 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== ==تاريخ== ==ٻين مستقلن سان تعلق== == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} njcdysc4x40ecxawcnowko4c96l2f5m 319954 319953 2025-06-18T19:20:39Z Ibne maryam 17680 /* تعريف */ 319954 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ==ٻين مستقلن سان تعلق== == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} qu3nqjtgq8feqi1sp9ycnytye6f29dj 319955 319954 2025-06-18T19:21:48Z Ibne maryam 17680 319955 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ==ٻين مستقلن سان تعلق== == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} o7zitodh8wtsbfpfbqejnzavoe4xgzk 319956 319955 2025-06-18T19:40:56Z Ibne maryam 17680 319956 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} iux67p8ajw2xv3v9b57hmvm2nq2rqe3 319957 319956 2025-06-18T19:41:22Z Ibne maryam 17680 319957 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 7fgz08kseng83b0ltzqnphtwbdncwkg 319958 319957 2025-06-18T19:52:02Z Ibne maryam 17680 319958 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== * {{math|''N''{{sub|A}}}} * {{mvar|R}} * {{math|''k''{{sub|B}}}} * {{val|1.380649|e=−23|u=J/K}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * {{physconst|R|ref=no}} * {{mvar|F}} * {{mvar|e}} * {{val|1.602176634|e=−19|u=[[coulomb]]s}} * {{math|1=''F'' = ''e N''{{sub|A}} =}} * {{physconst|F|ref=no}} * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{physconst|mu|after=&colon;}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * {{physconst|Mu|ref=no}} The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly {{val|1.380649|e=−23|u=J/K}}:<ref name=NIST2019/> *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp;{{physconst|R|ref=no}} * It relates the [[Faraday constant]] {{mvar|F}} and the [[elementary charge]] {{mvar|e}}, which in the SI is defined as exactly {{val|1.602176634|e=−19|u=[[coulomb]]s}}:<ref name=NIST2019/> *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp;{{physconst|F|ref=no}} * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently {{physconst|mu|after=&colon;}} *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp;{{physconst|Mu|ref=no}} == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 1zqro4hlbmnoagcfim0h7kyjnnznnjk 319959 319958 2025-06-18T20:00:06Z Ibne maryam 17680 319959 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * 1.602176634×10<sup>−19</sup> coulombs: *: ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant ''M''<sub>u</sub> and the atomic mass constant ''m''<sub>u</sub> currently 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup> == See also == The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly {{val|1.380649|e=−23|u=J/K}}:<ref name=NIST2019/> *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp;{{physconst|R|ref=no}} * It relates the [[Faraday constant]] {{mvar|F}} and the [[elementary charge]] {{mvar|e}}, which in the SI is defined as exactly {{val|1.602176634|e=−19|u=[[coulomb]]s}}:<ref name=NIST2019/> *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp;{{physconst|F|ref=no}} * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently {{physconst|mu|after=&colon;}} *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp;{{physconst|Mu|ref=no}} == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 2rtgmoy0a7a9kz2obmdwu1m2i76ln4t 319960 319959 2025-06-18T20:10:14Z Ibne maryam 17680 319960 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== ايوگاڊرو ڪانسٽنٽ (NA) ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان ڪانسٽنٽ (kB) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: R = kB NA = 8.314462618... J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: * اهو مولر ماس مستقل (Mu) ۽ ايٽمي ماس مستقل (mu) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10−27 ڪلوگرام: * Mu = mu NA = 1.00000000105(31)×10−3 ڪلوگرام⋅mol−1. * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * 1.602176634×10<sup>−19</sup> coulombs: *: ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant ''M''<sub>u</sub> and the atomic mass constant ''m''<sub>u</sub> currently 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup> == See also == The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly {{val|1.380649|e=−23|u=J/K}}:<ref name=NIST2019/> *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp;{{physconst|R|ref=no}} * It relates the [[Faraday constant]] {{mvar|F}} and the [[elementary charge]] {{mvar|e}}, which in the SI is defined as exactly {{val|1.602176634|e=−19|u=[[coulomb]]s}}:<ref name=NIST2019/> *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp;{{physconst|F|ref=no}} * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently {{physconst|mu|after=&colon;}} *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp;{{physconst|Mu|ref=no}} == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} g2ha80b67w6ptokjvag9ir2lkyku6t3 319961 319960 2025-06-18T20:12:05Z Ibne maryam 17680 319961 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== ايوگاڊرو ڪانسٽنٽ (NA) ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان ڪانسٽنٽ (kB) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: R = kB NA = 8.314462618... J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: ** It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly 1.602176634×10<sup>−19</sup> coulombs: **: ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * * اهو مولر ماس مستقل (Mu) ۽ ايٽمي ماس مستقل (mu) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10−27 ڪلوگرام: * Mu = mu NA = 1.00000000105(31)×10−3 ڪلوگرام⋅mol−1. * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * 1.602176634×10<sup>−19</sup> coulombs: *: ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant ''M''<sub>u</sub> and the atomic mass constant ''m''<sub>u</sub> currently 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup> == See also == The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly {{val|1.380649|e=−23|u=J/K}}:<ref name=NIST2019/> *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp;{{physconst|R|ref=no}} * It relates the [[Faraday constant]] {{mvar|F}} and the [[elementary charge]] {{mvar|e}}, which in the SI is defined as exactly {{val|1.602176634|e=−19|u=[[coulomb]]s}}:<ref name=NIST2019/> *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp;{{physconst|F|ref=no}} * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently {{physconst|mu|after=&colon;}} *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp;{{physconst|Mu|ref=no}} == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} pv5aciz0jk3gwt9qpui5daeo5kzguz3 319962 319961 2025-06-18T20:31:00Z Ibne maryam 17680 319962 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: R R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly {{val|1.380649|e=−23|u=J/K}}:<ref name=NIST2019/> *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp;{{physconst|R|ref=no}} * It relates the [[Faraday constant]] {{mvar|F}} and the [[elementary charge]] {{mvar|e}}, which in the SI is defined as exactly {{val|1.602176634|e=−19|u=[[coulomb]]s}}:<ref name=NIST2019/> *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp;{{physconst|F|ref=no}} * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently {{physconst|mu|after=&colon;}} *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp;{{physconst|Mu|ref=no}} == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} m3n41igw27cqgk5dy32t8ud4pvgzui7 319963 319962 2025-06-18T20:32:01Z Ibne maryam 17680 /* ٻين مستقلن سان تعلق */ 319963 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly {{val|1.380649|e=−23|u=J/K}}:<ref name=NIST2019/> *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp;{{physconst|R|ref=no}} * It relates the [[Faraday constant]] {{mvar|F}} and the [[elementary charge]] {{mvar|e}}, which in the SI is defined as exactly {{val|1.602176634|e=−19|u=[[coulomb]]s}}:<ref name=NIST2019/> *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp;{{physconst|F|ref=no}} * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently {{physconst|mu|after=&colon;}} *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp;{{physconst|Mu|ref=no}} == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 4deqqxlbb13m9wjkh73pe3nvrhqe49z 319964 319963 2025-06-18T20:34:53Z Ibne maryam 17680 319964 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration.<ref name=cipm106/><ref name=NIST2019/> One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C.<ref name=pave2018/><ref name=IUPAC/> Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes.<ref name=NIST2019/><ref name=bipm9th/> ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} t5kjdmij41wmpq5s49xgb84t7043mnc 319965 319964 2025-06-18T20:35:48Z Ibne maryam 17680 319965 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI).<ref name=bipm1971/> Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C).<ref name=bipm8th/> Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits.<ref name=bipm1971/> The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works.<ref name=kotz2008/> As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 7bdvm5cq2izubqvr8awrvoqq6v0c7p8 319966 319965 2025-06-18T20:36:31Z Ibne maryam 17680 319966 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas.<ref name=losch1865/> This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant,<ref name=bipm1971/> and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]].<ref name=virgo1933/> (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work.<ref name=oseen1926/> The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number.<ref name=ebrit1974/> ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} ewxmgvol99nnxk2kptqrj6eu67a65gr 319967 319966 2025-06-18T20:37:14Z Ibne maryam 17680 319967 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas.<ref name="perrin1909" /> The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas. This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant, and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]]. (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work. The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number. ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 8pgl2xyxfbqy5eeoypg9hhosorrmdev 319968 319967 2025-06-18T20:38:12Z Ibne maryam 17680 319968 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom.<ref name="bipm8th" /> The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]],<ref name="NIST2019" /> means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}},<ref name=pauling/><ref name=mcgraw/> although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas. The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas. This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant, and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]]. (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work. The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number. ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} rrqa69kqjklal8cptw56zi86n4y0leg 319969 319968 2025-06-18T20:39:25Z Ibne maryam 17680 319969 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom. The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]], means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}}, although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو."<ref name=avog1811/> Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas. The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas. This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant, and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]]. (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work. The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number. ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} a45s1u42w80npg0ec8igkm2nuuw4qv1 319970 319969 2025-06-18T20:40:36Z Ibne maryam 17680 319970 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom. The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]], means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}}, although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو." Avogadro's hypothesis was popularized four years after his death by [[Stanislao Cannizzaro]], who advocated Avogadro's work at the [[Karlsruhe Congress]] in 1860.<ref>{{Cite web |date=June 2016 |title=Stanislao Cannizzaro {{!}} Science History Institute |url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro |access-date=June 2, 2022 |website=Science History Institute}}</ref> The name ''Avogadro's number'' was coined in 1909 by the physicist [[Jean Baptiste Perrin|Jean Perrin]], who defined it as the number of molecules in exactly 32 grams of [[oxygen]] gas. The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas. This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant, and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]]. (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work. The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number. ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} svgh0ksuub6bh7rdikyb4sigx9qce28 319971 319970 2025-06-18T20:53:05Z Ibne maryam 17680 319971 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom. The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]], means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}}, although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو." ايووگاڊرو جو مفروضو سندس وفات کان چار سال پوءِ مشهور ٿيو، جڏهن اسٽينسلائو ڪينيزارو 1860ع ۾ ڪارلسروهي ڪانگريس ۾ ايووگاڊرو جي ڪم جي وڪالت ڪئي.<ref>{{Cite web|url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro|title=Stanislao Cannizzaro {{!}} Science History Institute|date=June 2016|website=Science History Institute|access-date=June 2, 2022}}</ref> ايووگاڊرو نمبر 1909ع ۾، فزڪس دان جين پيرين پاران ٺاهيو ويو، جنهن ان کي بلڪل 32 گرام آڪسيجن گئس ۾ ماليڪيولن جي تعداد جي طور تي بيان ڪيو. هن تعريف جو مقصد هڪ مادي جي هڪ مول جي ماس کي گرام ۾ ڪرڻ هو. عددي طور تي هائيڊروجن ايٽم جي ماس جي نسبت هڪ ماليڪيول جي ماس جي برابر هجي. جيڪو ايٽمي ماس جي قدرتي يونٽ هو، ۽ آڪسيجن جي ايٽمي ماس جو معيار سمجهيو ويندو هو. (مخصوص تناسب جي قانون موجب). The goal of this definition was to make the mass of a mole of a substance, in grams, be numerically equal to the mass of one molecule relative to the mass of the hydrogen atom; which, because of the [[law of definite proportions]], was the natural unit of atomic mass, and was assumed to be {{sfrac|1|16}} of the atomic mass of oxygen. ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas. This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant, and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]]. (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work. The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number. ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 9h8kpq0p2s6bbskyfopwn8mjllqp7el 319972 319971 2025-06-18T20:55:59Z Ibne maryam 17680 /* تصور جي ابتداء */ 319972 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom. The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]], means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}}, although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو." ايووگاڊرو جو مفروضو سندس وفات کان چار سال پوءِ مشهور ٿيو، جڏهن اسٽينسلائو ڪينيزارو 1860ع ۾ ڪارلسروهي ڪانگريس ۾ ايووگاڊرو جي ڪم جي وڪالت ڪئي.<ref>{{Cite web|url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro|title=Stanislao Cannizzaro {{!}} Science History Institute|date=June 2016|website=Science History Institute|access-date=June 2, 2022}}</ref> ايووگاڊرو نمبر 1909ع ۾، فزڪس دان جين پيرين پاران ٺاهيو ويو، جنهن ان کي بلڪل 32 گرام آڪسيجن گئس ۾ ماليڪيولن جي تعداد جي طور تي بيان ڪيو. هن تعريف جو مقصد هڪ مادي جي هڪ مول جي ماس کي گرام ۾ ڪرڻ هو. عددي طور تي هائيڊروجن ايٽم جي ماس جي نسبت هڪ ماليڪيول جي ماس جي برابر هجي. جيڪو ايٽمي ماس جي قدرتي يونٽ هو، ۽ آڪسيجن جي ايٽمي ماس جي 1/16 جي برابر سمجهيو ويو (مخصوص تناسب جي قانون موجب). ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas. This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant, and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]]. (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work. The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number. ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 9esmr7jp6sz2eljp2rt99cpe4ue6jrq 319973 319972 2025-06-18T20:59:21Z Ibne maryam 17680 319973 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|Approximate definition of a mole based on 12 grams of carbon-12]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|ڪاربان-12 جي 12 گرام تي ٻڌل هڪ مول جي تقريبن تعريف]] ايووگاڊرو ڪانسٽنٽ تاريخي طور تي مول جي پراڻي تعريف مان نڪتل هو جيئن 12 گرام ڪاربان-12 (12C) ۾ مادي جي مقدار. هن پراڻي تعريف موجب، mol−1 (ايووگاڊرو نمبر) ۾ ايووگاڊرو ڪانسٽنٽ جي عددي قدر هڪ جسماني ڪانسٽنٽ هئي جنهن کي تجرباتي طور تي طئي ڪرڻو پوندو هو. ڪاربان-12، M(12C)، ۽ ان جي ايٽمي ماس، m(12C) جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ جو تاريخي تعلق هيٺ ڏنل مساوات ۾ ظاهر ڪري سگهجي ٿو: The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom. The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]], means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}}, although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو." ايووگاڊرو جو مفروضو سندس وفات کان چار سال پوءِ مشهور ٿيو، جڏهن اسٽينسلائو ڪينيزارو 1860ع ۾ ڪارلسروهي ڪانگريس ۾ ايووگاڊرو جي ڪم جي وڪالت ڪئي.<ref>{{Cite web|url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro|title=Stanislao Cannizzaro {{!}} Science History Institute|date=June 2016|website=Science History Institute|access-date=June 2, 2022}}</ref> ايووگاڊرو نمبر 1909ع ۾، فزڪس دان جين پيرين پاران ٺاهيو ويو، جنهن ان کي بلڪل 32 گرام آڪسيجن گئس ۾ ماليڪيولن جي تعداد جي طور تي بيان ڪيو. هن تعريف جو مقصد هڪ مادي جي هڪ مول جي ماس کي گرام ۾ ڪرڻ هو. عددي طور تي هائيڊروجن ايٽم جي ماس جي نسبت هڪ ماليڪيول جي ماس جي برابر هجي. جيڪو ايٽمي ماس جي قدرتي يونٽ هو، ۽ آڪسيجن جي ايٽمي ماس جي 1/16 جي برابر سمجهيو ويو (مخصوص تناسب جي قانون موجب). ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas. This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant, and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]]. (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work. The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number. ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} 0fr3a38s0aiz94k54h75l1a3vv248i4 319974 319973 2025-06-18T21:00:47Z Ibne maryam 17680 319974 wikitext text/x-wiki {{Short description|Fundamental metric system constant defined as the number of particles per mole}} {{good article}} {{Infobox | above = ايووگاڊرو مستقل<br>Avogadro constant | image = [[File:Amadeo Avogadro.png|150px|upright=1]] | caption = [[اميڊيو ايووگاڊرو]], جن جي نالي تي مستقل جو نالو رکيو ويو آهي. |label1= عام علامتون |data1 = N<sub>A</sub>, L | label2 = [[اڪائين جو بين الاقوامي نظام|SI اڪائي]] | data2 = mol{{sup|−1}} | header3 = صحيح قدر | label4 = باهمي تناسب مول | data4 = 10<sup>23</sup> × 6.02214076 }} '''ايووگاڊرو مستقل''' (Avogadro's Constant)، عام طور تي N<sub>A</sub> يا L جي طور تي ظاهر ڪيو ويندو آهي، اڪائين جي نظام جو وضاحت ڪندڙ هڪ مستقل آهي، هن مستقل جي قدر (10<sup>23</sup> × 6.0221407) mol{{sup|−1}} آهي، جڏهن مول سان باهمي تناسب ۾ ظاهر ڪيو ويندو آهي.<ref name="SI20192">{{cite book|url=https://www.nist.gov/si-redefinition/meet-constants|title=The International System of Units (SI)|last1=Newell|first1=David B.|last2=Tiesinga|first2=Eite|publisher=National Institute of Standards and Technology|year=2019|series=NIST Special Publication 330|location=Gaithersburg, Maryland|doi=10.6028/nist.sp.330-2019|doi-access=free|s2cid=242934226}}</ref> اهو ڪنهن به شي جي نموني ۾ مول جي تعداد مطابق مادي ۾ موجود ذرڙن جي انگ جو تناسب بيان ڪري ٿو، جتي ذرڙا ڪهڙا به نامزد بنيادي وجود، جهڙوڪ ماليڪيول، ايٽم، آئن، آئن جا جوڙا، وغيره ٿي سگهن ٿا. جڏهن مول جي لحاظ کان ظاهر ڪيو ويندو آهي ته هن مستقل جي عددي قدر کي '''ايووگاڊرو''' '''نمبر''' طور سڃاتو وڃي ٿو، عام طور تي N<sub>0</sub> جي طور تي ظاهر ڪيو ويندو آهي. ايووگاڊرو نمبر هڪ پورو انگ آهي جيڪو ڪنهن به مادي جي هڪ مول ۾ ذرڙن جي تعداد جي برابر آهي (مول جي تعريف سان)، تاريخي طور تي اڪائين جي نظام جي 2019ع جي نظرثاني کان اڳ 12 گرام ڪاربن-12 (<sub>12</sub>C) ۾ ايٽمن جي تعداد جي تجرباتي تعين مان نڪتل آهي، يعني گرام-کان-ڊالٽن جي ماس جي اڪائي جو تناسب، g/Da. مستقل ۽ نمبر، ٻنهي جو نالو اطالوي طبيعيات دان ۽ ڪيميادان، اميڊيو ايووگاڊرو جي نالي تي رکيو ويو آهي. ايووگاڊرو مستقل کي هڪ تناسبي عنصر طور استعمال ڪيو ويندو آهي جڏهن ته مادي X جي نموني ۾ مادي n(X) جي مقدار کي بنيادي وجودن N(X) جي لاڳاپيل تعداد سان ڳنڍيو ويندو آهي:{{math|''N''(X)}}: : <math>n(\mathrm{X}) = \frac{N(\mathrm{X})}{N_{\mathrm{A}}}</math> ايووگاڊرو مستقل N<sub>A</sub> اهو عنصر پڻ آهي جيڪو مادي جي هڪ ذرڙي جي سراسري ماس m(X) کي ان جي مولر ماس M(X) ۾ تبديل ڪري ٿو. يعني، M(X) = m(X) ⋅ NA. هن مساوات کي 12C تي لاڳو ڪرڻ سان بلڪل 12 Da جي ايٽمي ماس ۽ 12 g/mol جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ لاءِ هيٺ ڏنل تعلق پيدا ٿئي ٿو (ٻيهر ترتيب ڏيڻ کان پوءِ): NA = (g/Da) mol−1، جيڪو ايووگاڊرو نمبر N0 = g/Da ٺاهيندو آهي. تاريخي طور تي، اهو بلڪل صحيح هو، پر SI جي 2019 جي نظرثاني کان وٺي، تعلق هاڻي صرف تقريبن آهي، جيتوڻيڪ برابري اڃا تائين اعلي درستگي سان فرض ڪري سگهجي ٿي. [[Image:Mole carbon-12 diagram.svg|thumb|400px|ڪاربان-12 جي 12 گرام تي ٻڌل هڪ مول جي تقريبن تعريف]] مستقل NA هڪ مادي جي مولر حجم (في مول حجم) کي پڻ ڳنڍيندو آهي سراسري مقدار جيڪو ان جي ذرڙن مان هڪ جي نالي سان قبضو ڪيو ويو آهي، جڏهن ٻئي حجم جي ساڳين يونٽن ۾ ظاهر ڪيا ويا آهن. مثال طور، جيئن ته عام حالتن ۾ پاڻي جو مولر حجم تقريباً 18 mL/mol آهي، پاڻي جي هڪ ماليڪيول پاران قبضو ڪيل حجم تقريباً 18/(6.022×1023) mL، يا تقريباً 0.030 nm3 (ڪعبي نانو ميٽر) آهي. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي ورجائيندڙ يونٽ سيلز جي هڪ مول جي مقدار سان، هڪ واحد سيل جي مقدار سان (ٻئي ساڳئي يونٽن ۾) سان لاڳاپيل ڪري ٿو. هڪ ڪرسٽل مادي لاءِ، N0 هڪ ڪرسٽل جي مقدار کي هڪ مول سان ڳنڍي ٿو. ورجائيندڙ يونٽ انٽيٽي (سيلز) جي قيمت، هڪ واحد انٽيٽي (سيلز) جي مقدار سان (ٻئي ساڳئي يونٽن ۾). ==تعريف== [[Image:Mole carbon-12 diagram.svg|thumb|400px|ڪاربان-12 جي 12 گرام تي ٻڌل هڪ مول جي تقريبن تعريف]] ايووگاڊرو ڪانسٽنٽ تاريخي طور تي مول جي پراڻي تعريف مان نڪتل هو جيئن 12 گرام ڪاربان-12 (12C) ۾ مادي جي مقدار. هن پراڻي تعريف موجب، mol−1 (ايووگاڊرو نمبر) ۾ ايووگاڊرو ڪانسٽنٽ جي عددي قدر هڪ جسماني ڪانسٽنٽ هئي جنهن کي تجرباتي طور تي طئي ڪرڻو پوندو هو. ڪاربان-12، M(12C)، ۽ ان جي ايٽمي ماس، m(12C) جي مولر ماس سان ايووگاڊرو ڪانسٽنٽ جو تاريخي تعلق هيٺ ڏنل مساوات ۾ ظاهر ڪري سگهجي ٿو: The Avogadro constant was historically derived from the old definition of the [[Mole (unit)|mole]] as the [[amount of substance]] in 12&nbsp;[[gram|grams]] of [[carbon-12]] (<sup>12</sup>C). By this old definition, the numerical value of the Avogadro constant in mol<sup>−1</sup> (the Avogadro number) was a physical constant that had to be determined experimentally. The historical relationship of the Avogadro constant to the [[molar mass]] of carbon-12, {{math|''M''(<sup>12</sup>C)}}, and its [[atomic mass]], {{math|''m''(<sup>12</sup>C)}}, can be expressed in the following equation: <math display="block">N_{\text{A}} = \frac{M(^{12}\text{C})}{m(^{12}\text{C})} = \frac{12\text{ g/mol}}{12\text{ Da}} = \frac{\text{g/mol}}{\text{Da}} = (\text{g/Da})\text{ mol}^{-1}</math>Thus, {{math|''N''{{sub|0}}}}, the numerical value of {{math|''N''{{sub|A}}}}, was equal to the number of [[dalton (unit)|daltons]] in a gram (g/Da), where the dalton is defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom. The redefinition of the mole in 2019, as being the amount of substance consisting of exactly {{val|6.02214076|e=23}} [[elementary entities]], means that the mass of 1 mole of a substance is now exactly the product of the Avogadro number and the average mass of one of the entities involved. The dalton, however, is still defined as {{sfrac|1|12}} of the mass of a <sup>12</sup>C atom, which must be determined experimentally and is known only with finite [[accuracy and precision|accuracy]]. Thus, prior experiments that aimed to determine the numerical value of the Avogadro constant when expressed in reciprocal moles—i.e. the Avogadro number (now numerically fixed)—are re-interpreted as measurements of the numerical value in grams of the dalton. By the old definition of mole, the numerical value of the mass of one mole of a substance expressed in grams (i.e., its molar mass in g/mol or kg/kmol), was precisely equal to the average mass of one particle expressed in daltons. With the new definition, this numerical equivalence is no longer exact, as it is affected by the uncertainty in the value of the gram-to-dalton (g/Da) mass-unit ratio. However, it may still be assumed for all practical purposes. For example, the average mass of one molecule of [[water]] is about 18.0153&nbsp;daltons, and an amount of one mole of water has a corresponding macroscopic mass of about 18.0153&nbsp;grams. Also, the Avogadro number is the approximate number of [[nucleon]]s ([[proton]]s and [[neutron]]s) in one gram of ordinary [[matter]]. An amount of substance consisting of just a single elementary entity might be thought of as an "elementary amount", analogous to the [[elementary charge]], {{math|1=''e''}}. Letting {{math|1=''n''<sub>a</sub>}} denote this elementary amount, then {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub> ''n''<sub>a</sub>}}}}, with the mole defined such that {{Nowrap|{{math|''N''<sub>A</sub> {{=}} ''N''<sub>0</sub>}}/mol}}, which can be rearranged as {{Nowrap|1=1 mol = {{math|''N''<sub>0</sub>/''N''<sub>A</sub>}}}}. Thus, {{math|1=''n''<sub>a</sub> = 1/''N''<sub>A</sub>}}, the reciprocal of the Avogadro constant. The fundamental definition of the Avogadro constant itself is therefore one per elementary amount ({{math|1=''N''{{sub|A}} = 1/''n''<sub>a</sub>}}), independent of any macroscopic base unit chosen for the physical quantity. (Since there is an aggregate of an Avogadro number of elementary entities in one mole, the Avogadro constant can also be ''expressed'' (in terms of the mole) as an Avogadro number per mole—but this is ''not'' its "definition".) The Avogadro constant, a well-defined quantity value (with dimension '''1'''/'''N'''), independent of the mole, is therefore a ''bona fide'' defining constant for the 2019 redefinition of the mole. Introducing {{math|1=''n''<sub>a</sub>}} in place of {{math|1=1/''N''<sub>A</sub>}}, means that {{math|1=''n''(X) = ''N''(X)<sub> </sub>''n''<sub>a</sub>}}—amount of substance is an aggregate of {{math|1=''N''(X)}} elementary entities—which is easier to comprehend than {{math|1=''N''(X)}} "reciprocal Avogadro constants". Also the molar mass is then {{math|1=''M''(X) = ''m''(X)/''n''<sub>a</sub>}}—the entity mass per entity, which is self-evident. In older literature, the Avogadro number was also denoted {{mvar|N}}, although that conflicts with the symbol for [[number of particles]] in [[statistical mechanics]]. ==تاريخ== ===تصور جي ابتداء=== [[File:Jean Perrin 1926.jpg|right|thumb|جين پيرن، سال 1926ع ۾]] ايووگاڊرو مستقل جو نالو اطالوي سائنسدان، اميڊيو ايووگاڊرو (1776-1856)، جي نالي تي رکيو ويو، جيڪو سال 1811ع ۾ پهرين ڀيرو تجويز ڪيو ته، "هڪ گئس (ڪنهن نوعيت جي گئس) جو حجم (هڪ ڏنل دٻاء ۽ گرميء پد تي)، هن ۾ موجود ايٽمن يا ماليڪيولن جي تعداد سان سڌو تناسب رکي ٿو، گئس جي نوعيت ڪهڙي به هو." ايووگاڊرو جو مفروضو سندس وفات کان چار سال پوءِ مشهور ٿيو، جڏهن اسٽينسلائو ڪينيزارو 1860ع ۾ ڪارلسروهي ڪانگريس ۾ ايووگاڊرو جي ڪم جي وڪالت ڪئي.<ref>{{Cite web|url=https://www.sciencehistory.org/historical-profile/stanislao-cannizzaro|title=Stanislao Cannizzaro {{!}} Science History Institute|date=June 2016|website=Science History Institute|access-date=June 2, 2022}}</ref> ايووگاڊرو نمبر 1909ع ۾، فزڪس دان جين پيرين پاران ٺاهيو ويو، جنهن ان کي بلڪل 32 گرام آڪسيجن گئس ۾ ماليڪيولن جي تعداد جي طور تي بيان ڪيو. هن تعريف جو مقصد هڪ مادي جي هڪ مول جي ماس کي گرام ۾ ڪرڻ هو. عددي طور تي هائيڊروجن ايٽم جي ماس جي نسبت هڪ ماليڪيول جي ماس جي برابر هجي. جيڪو ايٽمي ماس جي قدرتي يونٽ هو، ۽ آڪسيجن جي ايٽمي ماس جي 1/16 جي برابر سمجهيو ويو (مخصوص تناسب جي قانون موجب). ===پهريون ماپ=== [[File:Johann Josef Loschmidt portrait plaque.jpg|right|thumb|جوزف لوشمٽ]] The value of Avogadro's number (not yet known by that name) was first obtained indirectly by [[Johann Josef Loschmidt|Josef Loschmidt]] in 1865, by estimating the number of particles in a given volume of gas. This value, the [[number density]] {{math|''n''{{sub|0}}}} of particles in an [[ideal gas]], is now called the [[Loschmidt constant]] in his honor, and is related to the Avogadro constant, {{math|''N''{{sub|A}}}}, by : <math>n_0 = \frac{p_0N_{\rm A}}{R\,T_0},</math> where {{math|''p''{{sub|0}}}} is the [[pressure]], {{math|''R''}} is the [[gas constant]], and {{math|''T''{{sub|0}}}} is the [[absolute temperature]]. Because of this work, the symbol {{math|''L''}} is sometimes used for the Avogadro constant, and, in [[German language|German]] literature, that name may be used for both constants, distinguished only by the [[units of measurement]]. (However, {{math|''N''{{sub|A}}}} should not be confused with the entirely different [[Loschmidt constant]] in English-language literature.) Perrin himself determined the Avogadro number, which he called "Avogadro's constant" (constante d'Avogadro), by several different experimental methods. He was awarded the 1926 [[Nobel Prize in Physics]], largely for this work. The electric charge per [[Mole (unit)|mole]] of electrons is a constant called the [[Faraday constant]] and has been known since 1834, when [[Michael Faraday]] published [[Faraday's laws of electrolysis|his works on electrolysis]]. In 1910, [[Robert Millikan]] with the help of [[Harvey Fletcher]] obtained the first measurement of the [[elementary charge|charge on an electron]]. Dividing the charge on a mole of electrons by the charge on a single electron provided a more accurate estimate of the Avogadro number. ===SI نظام جي 1971ع واري تعريف=== In 1971, in its 14th conference, the [[International Bureau of Weights and Measures]] (BIPM) decided to regard the [[amount of substance]] as an independent [[dimensional analysis|dimension of measurement]], with the mole as its [[SI unit|base unit]] in the [[International System of Units]] (SI). Specifically, the mole was defined as the amount of a substance that contains as many elementary entities as there are atoms in {{nowrap|12 grams}} ({{nowrap|0.012 [[kilogram]]s}}) of [[carbon-12]] (<sup>12</sup>C). Thus, in particular, an amount of one mole of carbon 12 had a corresponding mass that was ''exactly'' {{nowrap|12 grams}} of that element. By this definition, one mole of any substance contained exactly as many elementary entities as one mole of any other substance. However, this number {{math|''N''{{sub|0}}}} was a physical constant that had to be experimentally determined since it depended on the mass (in grams) of one atom of <sup>12</sup>C, and therefore, it was known only to a limited number of decimal digits. The common rule of thumb that "one gram of matter contains {{math|''N''{{sub|0}}}} nucleons" was exact for carbon-12, but slightly inexact for other elements and isotopes. In the same conference, the BIPM also named {{math|''N''{{sub|A}}}} (the factor that related the amount of a substance to the corresponding number of particles) the "Avogadro ''constant''". However, the term "Avogadro number" continued to be used, especially in introductory works. As a consequence of this definition, {{math|''N''{{sub|A}}}} was not a pure number, but had the [[quantity dimension]] of reciprocal of amount of substance ('''N'''<sup>−1</sup>). ===2019ع ۾ SI نظام پاران ٻيهر تعريف=== {{main|2019 revision of the SI}} In its 26th Conference, the BIPM adopted a different approach: effective 20 May 2019, it defined the Avogadro constant {{math|''N''{{sub|A}}}} as the exact value {{val|6.02214076|e=23|u=mol-1}}, thus redefining the mole as exactly {{val|6.02214076|e=23}} constituent particles of the substance under consideration. One consequence of this change is that the mass of a mole of <sup>12</sup>C atoms is no longer exactly 0.012&nbsp;kg. On the other hand, the dalton, Da ({{aka}} unified atomic mass unit, u), remains unchanged as {{sfrac|1|12}} of the mass of <sup>12</sup>C. Thus, the [[molar mass constant]] remains very close to but no longer exactly equal to 1&nbsp;g/mol, although the difference ({{val|4.5|e=-10}} in relative terms, as of March 2019) is insignificant for all practical purposes. ==ٻين مستقلن سان تعلق== ايوگاڊرو مستقل ( {{math|''N''{{sub|A}}}})ٻين طبيعي مستقلن ۽ خاصيتن سان لاڳاپيل آهي. * اهو مولر گيس مستقل (R) ۽ بولٽزمان مستقل ({{math|''k''{{sub|B}}}}) کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل 1.380649×10−23 جولز في ڪيلون طور بيان ڪيو ويو آهي: * R= kB NA = 8.314462618.. J⋅mol−1⋅K−1 * اهو فيراڊي مستقل F ۽ ابتدائي چارج e کي ڳنڍي ٿو، جيڪو SI ۾ بلڪل بيان ڪيو ويو آهي: اهو فيراڊي مستقل F ۽ ابتدائي چارج e سان لاڳاپيل آهي، جيڪو SI ۾ بلڪل 1.602176634×10−19 ڪولمبس طور بيان ڪيو ويو آهي: * 1.602176634×10<sup>−19</sup> coulombs * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol<sup>−1</sup> * {{math|1=''F'' = ''e N''{{sub|A}} =}} * F = e NA = 9.648533212...×104 C⋅mol−1 * 1.602176634×10<sup>−19</sup> coulombs: * ''F'' = ''e N''<sub>A</sub> = 9.648533212...×10<sup>4</sup> C⋅mol * اهو مولر ماس مستقل (''M''<sub>u</sub> ۽ ايٽمي ماس مستقل (''m''<sub>u</sub>) کي ڳنڍي ٿو: هن وقت * 1.66053906892(52)×10<sup>−27</sup> kg: *: ''M''<sub>u</sub> = ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> kg⋅mol<sup>−1</sup><br /> * {{math|''N''{{sub|A}}}} * {{math|''k''{{sub|B}}}} * {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}} * 1.380649×10<sup>−23</sup> J/K: * ''R'' = ''k''<sub>B</sub> * ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * {{math|''M''{{sub|u}}}} * {{math|''m''{{sub|u}}}} * {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}} * 1.66053906892(52)×10<sup>−27</sup> kg: * ''m''<sub>u</sub> ''N''<sub>A</sub> = 1.00000000105(31)×10<sup>−3</sup> <sup>k</sup> kg⋅mol<sup>−1</sup> Avogadro constant ''N''<sub>A</sub> is related to other physical constants and properties. * It relates the molar gas constant ''R'' and the Boltzmann constant ''k''<sub>B</sub>, which in the SI is defined to be exactly 1.380649×10<sup>−23</sup> J/K: *: ''R'' = ''k''<sub>B</sub> ''N''<sub>A</sub> = 8.314462618... J⋅mol<sup>−1</sup>⋅K<sup>−1</sup> * It relates the Faraday constant ''F'' and the elementary charge ''e'', which in the SI is defined as exactly * It relates the molar mass constant * The Avogadro constant {{math|''N''{{sub|A}}}} is related to other physical constants and properties. * It relates the [[molar gas constant]] {{mvar|R}} and the [[Boltzmann constant]] {{math|''k''{{sub|B}}}}, which in the SI is defined to be exactly : *: {{math|1=''R'' = ''k''{{sub|B}} ''N''{{sub|A}} =}}&nbsp; * It relates the [[Faraday constant]] and the [[elementary charge]] , which in the SI is defined as exactly : *: {{math|1=''F'' = ''e N''{{sub|A}} =}}&nbsp; * It relates the [[molar mass constant]] {{math|''M''{{sub|u}}}} and the [[atomic mass constant]] {{math|''m''{{sub|u}}}} currently *: {{math|1=''M''{{sub|u}} = ''m''{{sub|u}} ''N''{{sub|A}} =}}&nbsp; == تفصيل == Avogadro constant {{math|''N''{{sub|A}}}} is also the factor that converts the average [[mass]] {{math|''m''(X)}} of one particle of a substance to its [[molar mass]] {{math|''M''(X)}}. That is, {{math|1=''M''(X) = ''m''(X) ⋅ ''N''<sub>A</sub>}}. Applying this equation to [[Carbon-12|<sup>12</sup>C]] with an atomic mass of exactly 12&nbsp;Da and a molar mass of 12&nbsp;g/mol yields (after rearrangement) the following relation for the Avogadro constant: {{math|1=''N''<sub>A</sub>}}&nbsp;=&nbsp;(g/Da)&nbsp;mol<sup>−1</sup>, making the Avogadro number {{math|''N''{{sub|0}}}}&nbsp;=&nbsp;g/Da. Historically, this was precisely true, but since the 2019 revision of the SI, the relation is now merely approximate, although equality may still be assumed with high accuracy. The constant {{math|''N''{{sub|A}}}} also relates the [[molar volume]] (the volume per mole) of a substance to the average volume nominally occupied by one of its particles, when both are expressed in the same units of volume. For example, since the molar volume of water in ordinary conditions is about {{nowrap|18 [[millilitre|mL]]/mol}}, the volume occupied by one molecule of water is about {{nowrap|18/(6.022{{e|23}}) mL}}, or about {{val|0.030|u=nm3}} (cubic [[nanometre]]s). For a [[crystal]]line substance, {{math|''N''{{sub|0}}}} relates the volume of a crystal with one mole worth of repeating [[crystal structure|unit cells]], to the volume of a single cell (both in the same units). ==پڻ ڏسو== * [[مول|مول (اڪائي)]] * [[معياري ايٽمي مايو]] * [[مولر حجم]] * [[ماليڪيولي مايو]] ==ٻاهريان ڳنڍڻا== * [https://goldbook.iupac.org/terms/view/A00543 1996 definition of the Avogadro constant] from the [[IUPAC]] ''[[Compendium of Chemical Terminology]]'' ("''Gold Book''") * [https://web.archive.org/web/20140428004944/http://iweb.tntech.edu/tfurtsch/scihist//avogadro.htm Some Notes on Avogadro's Number, {{val|6.022|e=23}}] ''(historical notes)'' * [https://www.americanscientist.org/article/an-exact-value-for-avogadros-number An Exact Value for Avogadro's Number] – ''[[American Scientist]]'' * [https://web.archive.org/web/20110717124427/http://www.inrim.it/Nah/Web_Nah/home.htm Avogadro and molar Planck constants for the redefinition of the kilogram] * {{cite journal |doi=10.1002/1522-2675(20010613)84:6<1314::AID-HLCA1314>3.0.CO;2-Q|title=Avogadro and His Constant|year=2001|last1=Murrell|first1=John N.|journal=Helvetica Chimica Acta|volume=84|issue=6|pages=1314–1327}} * Scanned version of "Two hypothesis of Avogadro", 1811 Avogadro's article, on ''[https://translate.google.com/translate?&us=auto&tl=en&u=https%3A%2F%2Fwww.bibnum.education.fr%2Fchimie%2Ftheorie-chimique%2Fles-deux-hypotheses-d-avogadro-en-1811 BibNum]'' {{Authority control}} [[زمرو:ڪيميا]] [[زمرو:ڪيميائي مقدارون]] [[زمرو:ڪيميائي اصطلاحون]] [[Category:Amount of substance]] [[Category:Fundamental constants]] ==حوالا== {{حوالا}} f5fefb5vao61bma1371sesptwslac5i واپرائيندڙ بحث:Aammyyyyyx 3 83088 319906 2025-06-18T14:46:01Z KaleemBot 10779 ڀليڪار! 319906 wikitext text/x-wiki {{سانچو:سماجي ڳنڍڻن تي سنڌي وڪيپيڊيا}} <div style="padding:5px;font-size:medium"><center style="word-spacing:1ex">[[Wikipedia:سفارتخانو|سفارتخاني جي صفحي تي پنھنجون سفارشون ڏيو]] </center></div> {| bgcolor="#ADDFAD" align=center style="width:100% !important; -moz-border-radius: 1em;-webkit-border-radius:1em;border-radius:1em; border-top:2px dashed #3eb2c9;border-bottom:2px dashed #3eb2c9;padding: 5px 20px 25px;" |<span style="font-family:MB Lateefi;float:left">'''[[Wikipedia:سفارتخانو|سفارتخانو]]'''</span> <div class="tabber horizTabBox" style="width: 100% !important;"> [[عڪس:Wikipedia laurier wp.png|left|200px]] <center><big>'''بزمِ سنڌي وڪيپيڊيا ۾ ڀلي ڪري آيا''' ''{{PAGENAME}}'''</big></center>'' '''السلام عليڪم! اسان اميد ڪريون ٿا تہ توھان سنڌي وڪيپيڊيا جي لاء بھترين اضافو ثابت ٿيندئو'''.<br> * وڪيپيڊيا ھڪ کليل ڄاڻ چيڪلو آھي جنھن کي اسان سڀ ملي ڪري لکندا ۽ سنواريندا آھيون. وڪيپيڊيا منصوبي جي شروعات جنوري 2001ع ۾ ٿي، جڏھن تہ سنڌي وڪيپيڊيا فيبروري 2006ع ۾ عمل آئي. في الحال ھن وڪيپيڊيا ۾ '''{{NUMBEROFARTICLES}}''' [[Special:Allpages|مضمون]] موجود آھن.<br /> * ھن چيڪلي (انسائيڪلوپيڊيا) ۾ توھان مضمون نويسي، سنوار ۽ تصحيح کان پھريان ھيٺين صفحن تي ضرور نظر وجھو.''' * صفحن جي ظاھريت جي تبديلي ۽ طریقيڪار جي لاءِ ڏسو '''[[خاص:ترجيحات|ترجيحون]]'''. <Font - size=4> '''اصول ۽ قاعدا''' </Font - size> <Font - size=3> '''توھان جو واپرائيندڙ ۽ بحث صفحو''' </Font - size><br> ھتي توھانجو [[خاص:Mypage|'''مخصوص واپرائيندڙ صفحو بہ ھوندو''']] جتي توھان [[:زمرو:يوزر سانچا|پنھنجو تعارف لکي سگھو ٿا]]، ۽ توهانجي [[خاص:Mytalk|واپرائيندڙ بحث]] تي ٻيا رڪنَ توھان سان رابطو ڪري سگھن ٿا ۽ توھان ڏي پيغام موڪلي سگھن ٿا. * '''ڪنھن ٻئي رڪن کي پيغام موڪلڻ وقت ھنن امرن جو خاص خيال رکو''': ** '''جيڪڏھن ضرورت هجي تہ پيغام کي عنوان ضرور ڏيو'''. ** '''پيغام جي آخر ۾ پنهنجي صحيح ضرور وجھو، ان جي لاءِ هي علامت درج ڪريو'''--&#126;&#126;&#126;&#126;''' يا ھن ([[عڪس:Insert-signature.png|link=]]) بٽڻ تي ٽڙڪ ڪريو'''. ** '''[[Wikipedia:اصول بحث|اظھار بحث جي آدابن]] جو خصوصي خيال رکو'''. <Font - size=3> '''تعاون''' </Font - size> * '''وڪيپيڊيا جي ڪنھن بہ صفحي جي سڄي پاسي ڳوليو جو خانو نظر ايندو آھي. جنھن موضوع تي مضمون ٺاھڻ چاھيو تہ ڳوليو جي خاني ۾ لکو، ۽ ڳوليو تي ٽڙڪ ڪريو'''. <inputbox>type=search</inputbox> * '''توھان جي موضوع سان ملندڙ جلندڙ صفحا نظر ايندا. اھو اطمينان ڪرڻ کان پوء تہ توھان جي گهربل موضوع تي پھريان کان مضمون موجود ناھي، توھان نئون صفحو ٺاھي سگھو ٿا واضع هجي تہ ھڪ موضوع تي ھڪ کان وڌيڪ مضمون ٺاھڻ جي اجازت ناھي. توھان ھيٺ ڏنل خانو بہ استعمال ڪري سگھو ٿا'''. <inputbox>type=create</inputbox> * '''لکڻ کان پهرئين ھن ڳالھ جو يقين ڪريو تہ جنھن عنوان تي توھان لکي رھيا آھيو ان تي يا ان سان ملندڙ عنوانن تي وڪي ۾ ڪوئي مضمون نہ ھجي. ان جي لاء توھان ڳوليو جي خاني ۾ عنوان ۽ ان جا هم معنيٰ لفظ (اهڙا لفظ جن جي معني هڪ هجي) لکي ڳولا ڪريو'''.</center> |} -- توھان جي مدد جي لاء ھر وقت حاضر، اوهان جو خادم --[[واپرائيندڙ:KaleemBot|KaleemBot]] ([[واپرائيندڙ بحث:KaleemBot|ڳالھ]]) 14:46, 18 جُونِ 2025 ( يو.ٽي.سي) 2x3v7ce2mfchwxnm9nerd64hnw5gkz5 رنگ انڌوپن 0 83089 319991 2025-06-19T10:28:50Z Ibne maryam 17680 نئون صفحو: '''رنگ انڌو پن''' (Colorblindness)، نظر ۾ رنگن جي خرابي (CVD) يا رنگ جي گهٽتائي، ڪجهه رنگن کي ڏسڻ يا رنگن ۾ فرق ڪرن جي صلاحيت ۾ گهٽتائي آهي. رنگ انڌو پن جي شدت گهڻو ڪري معمولي اڻ ڏٺل کان وٺي رنگ جي تصور جي مڪمل غير موجودگي تائين آهي. رنگ انڌو پن عام طور تي هڪ جنس سان ڳنڍيل وراثتي م... 319991 wikitext text/x-wiki '''رنگ انڌو پن''' (Colorblindness)، نظر ۾ رنگن جي خرابي (CVD) يا رنگ جي گهٽتائي، ڪجهه رنگن کي ڏسڻ يا رنگن ۾ فرق ڪرن جي صلاحيت ۾ گهٽتائي آهي. رنگ انڌو پن جي شدت گهڻو ڪري معمولي اڻ ڏٺل کان وٺي رنگ جي تصور جي مڪمل غير موجودگي تائين آهي. رنگ انڌو پن عام طور تي هڪ جنس سان ڳنڍيل وراثتي مسئلو آهي. يا ريٽنا ۾ ڪون سيلز جي ٽن طبقن مان هڪ يا وڌيڪ جي ڪارڪردگي ۾ تبديلي. جيڪو رنگ جي نظر کي وچولي ڪري ٿو. سڀ کان عام شڪل هڪ جينياتي حالت جي ڪري ٿيندي آهي جنهن کي پيدائشي ڳاڙهي-سائي رنگ انڌو پن سڏيو ويندو آهي. (پروٽين ۽ ڊيوٽان قسمن سميت). جيڪو 12 مان 1 مرد (8٪) ۽ 200 مان 1 عورتن (0.5٪) کي متاثر ڪري ٿو. اها حالت مردن ۾ وڌيڪ عام آهي. ڇاڪاڻ ته ذميوار اوپسن جين X ڪروموسوم تي واقع آهن. رنگ انڌو پن جو سبب بڻجندڙ نادر جينياتي حالتن ۾ پيدائشي نيرو-پيلو رنگ انڌو پن (ٽريٽن قسم)، نيرو ڪون مونوڪروميسي، ۽ ايڪروميٽوپسيا شامل آهن. رنگ انڌو پن اکين کي جسماني يا ڪيميائي نقصان جي نتيجي ۾ پڻ ٿي سگهي ٿو. آپٽڪ نروس. دماغ جا حصا. يا دوائن جي زهر جي ڪري. رنگ جي نظر قدرتي طور تي وڏي عمر ۾ پڻ خراب ٿئي ٿي. fs64f4dbzsnp9nwx700vwt6oivto2zr 319992 319991 2025-06-19T10:49:08Z Ibne maryam 17680 319992 wikitext text/x-wiki '''رنگ انڌو پن''' (Colorblindness)، نظر ۾ رنگن جي خرابي (CVD) يا رنگ جي گهٽتائي، ڪجهه رنگن کي ڏسڻ يا رنگن ۾ فرق ڪرن جي صلاحيت ۾ گهٽتائي آهي. رنگ انڌو پن جي شدت گهڻو ڪري معمولي کان وٺي رنگن جي تصور جي مڪمل غير موجودگي تائين آهي. رنگ انڌو پن عام طور تي هڪ جنس سان ڳنڍيل وراثتي مسئلو آهي، جئين تي اها اک جي پردي (Retina) ۾ جيو گهرڙن جي ٽن طبقن، جيڪا نظر ۾ رنگن جي وچولي طور ڪم ڪندا آهن، مان هڪ يا وڌيڪ جي ڪارڪردگي ۾ تبديلي آهي. سڀ کان عام شڪل هڪ جينياتي حالت (پروٽان ۽ ڊيوٽان قسمن سميت) جي ڪري ٿيندي آهي جنهن کي پيدائشي ڳاڙهي-سائي رنگ جو انڌو پن سڏيو ويندو آهي، جيڪو 12 مان هڪ مرد (%8) ۽ 200 مان هڪ عورت (%0.5) کي متاثر ڪري ٿي. اها حالت مردن ۾ وڌيڪ عام آهي، ڇاڪاڻ ته هن جا ذميوار جين، مردانه X ڪروموسوم ۾ موجود هوندا آهن. رنگ انڌو پن جو سبب بڻجندڙ نادر جينياتي حالتن ۾ پيدائشي نيرو-پيلو رنگ انڌو پن (ٽريٽان قسم)، نيرو رنگ جي هڪ رنگي (monochromacy) ۽ ايڪروميٽوپسيا شامل آهن. رنگ انڌو پن اکين، بصري تنتي يا دماغ جي بصري حصي (optic lobe) کي طبيعي (Physical) يا ڪيميائي نقصان يا دوائن جي زهر (side effects)، جي نتيجي ۾ پڻ ٿي سگهي ٿو. ان کان سواء نظر ۾ رنگن کي تميز ڪرڻ جي صلاحيت قدرتي طور تي وڏي عمر ۾ گهٽجي ويندي آهي. [[زمرو:طب]] [[زمرو:صحت]] [[زمرو:بيماريون]] mh0wwr2qhd8cg4aqx90c042ryky2mhl 319999 319992 2025-06-19T11:52:35Z Ibne maryam 17680 319999 wikitext text/x-wiki '''رنگ انڌو پن''' (Colorblindness)، نظر ۾ رنگن جي خرابي (CVD) يا رنگ جي گهٽتائي، ڪجهه رنگن کي ڏسڻ يا رنگن ۾ فرق ڪرن جي صلاحيت ۾ گهٽتائي آهي. رنگ انڌو پن جي شدت گهڻو ڪري معمولي کان وٺي رنگن جي تصور جي مڪمل غير موجودگي تائين آهي. رنگ انڌو پن عام طور تي هڪ جنس سان ڳنڍيل وراثتي مسئلو آهي، جئين تي اها اک جي پردي (Retina) ۾ جيو گهرڙن جي ٽن طبقن، جيڪا نظر ۾ رنگن جي وچولي طور ڪم ڪندا آهن، مان هڪ يا وڌيڪ جي ڪارڪردگي ۾ تبديلي آهي. سڀ کان عام شڪل هڪ جينياتي حالت (پروٽان ۽ ڊيوٽان قسمن سميت) جي ڪري ٿيندي آهي جنهن کي پيدائشي ڳاڙهي-سائي رنگ جو انڌو پن سڏيو ويندو آهي، جيڪو 12 مان هڪ مرد (%8) ۽ 200 مان هڪ عورت (%0.5) کي متاثر ڪري ٿي. اها حالت مردن ۾ وڌيڪ عام آهي، ڇاڪاڻ ته هن جا ذميوار جين، مردانه X ڪروموسوم ۾ موجود هوندا آهن. رنگ انڌو پن جو سبب بڻجندڙ نادر جينياتي حالتن ۾ پيدائشي نيرو-پيلو رنگ انڌو پن (ٽريٽان قسم)، نيرو رنگ جي هڪ رنگي (monochromacy) ۽ ايڪروميٽوپسيا شامل آهن. رنگ انڌو پن اکين، بصري تنتي يا دماغ جي بصري حصي (optic lobe) کي طبيعي (Physical) يا ڪيميائي نقصان يا دوائن جي زهر (side effects)، جي نتيجي ۾ پڻ ٿي سگهي ٿو. ان کان سواء نظر ۾ رنگن کي تميز ڪرڻ جي صلاحيت قدرتي طور تي وڏي عمر ۾ گهٽجي ويندي آهي. ==حوالا== {{حوالا}} [[زمرو:بيماريون]] [[زمرو:آپٿالمولاجي]] [[زمرو:اکين جي بيماريون]] t7dnlqgxlvgx6r1pqughpbkx8qns0ge 320000 319999 2025-06-19T11:57:33Z Ibne maryam 17680 /* ٻاهريان ڳنڍڻا */ 320000 wikitext text/x-wiki '''رنگ انڌو پن''' (Colorblindness)، نظر ۾ رنگن جي خرابي (CVD) يا رنگ جي گهٽتائي، ڪجهه رنگن کي ڏسڻ يا رنگن ۾ فرق ڪرن جي صلاحيت ۾ گهٽتائي آهي. رنگ انڌو پن جي شدت گهڻو ڪري معمولي کان وٺي رنگن جي تصور جي مڪمل غير موجودگي تائين آهي. رنگ انڌو پن عام طور تي هڪ جنس سان ڳنڍيل وراثتي مسئلو آهي، جئين تي اها اک جي پردي (Retina) ۾ جيو گهرڙن جي ٽن طبقن، جيڪا نظر ۾ رنگن جي وچولي طور ڪم ڪندا آهن، مان هڪ يا وڌيڪ جي ڪارڪردگي ۾ تبديلي آهي. سڀ کان عام شڪل هڪ جينياتي حالت (پروٽان ۽ ڊيوٽان قسمن سميت) جي ڪري ٿيندي آهي جنهن کي پيدائشي ڳاڙهي-سائي رنگ جو انڌو پن سڏيو ويندو آهي، جيڪو 12 مان هڪ مرد (%8) ۽ 200 مان هڪ عورت (%0.5) کي متاثر ڪري ٿي. اها حالت مردن ۾ وڌيڪ عام آهي، ڇاڪاڻ ته هن جا ذميوار جين، مردانه X ڪروموسوم ۾ موجود هوندا آهن. رنگ انڌو پن جو سبب بڻجندڙ نادر جينياتي حالتن ۾ پيدائشي نيرو-پيلو رنگ انڌو پن (ٽريٽان قسم)، نيرو رنگ جي هڪ رنگي (monochromacy) ۽ ايڪروميٽوپسيا شامل آهن. رنگ انڌو پن اکين، بصري تنتي يا دماغ جي بصري حصي (optic lobe) کي طبيعي (Physical) يا ڪيميائي نقصان يا دوائن جي زهر (side effects)، جي نتيجي ۾ پڻ ٿي سگهي ٿو. ان کان سواء نظر ۾ رنگن کي تميز ڪرڻ جي صلاحيت قدرتي طور تي وڏي عمر ۾ گهٽجي ويندي آهي. ==ٻاهريان ڳنڍڻا== {{Commons category|Color blindness}} {{Wikisource|Popular Science Monthly/Volume 19/May 1881/Color-Blindness}} * [http://tigger.uic.edu/~hilbert/Glossary.html "A Glossary of Color Science."] {{Webarchive|url=https://web.archive.org/web/20151004164334/http://tigger.uic.edu/~hilbert/Glossary.html |date=4 October 2015 }} {{Medical resources | DiseasesDB = 2999 | ICD11 = {{ICD11|9D44}} | ICD10 = {{ICD10|H53.5}} | ICD9 = {{ICD9|368.5}} | ICDO = | OMIM = | MedlinePlus = 001002 | eMedicineSubj = | MeshID = D003117 }} {{Color vision}} {{Eye pathology}} {{Color topics}} {{Authority control}} [[زمرو:بيماريون]] [[زمرو:آپٿالمولاجي]] [[زمرو:اکين جي بيماريون]] [[Category:Color blindness| ]] [[Category:Agnosia]] [[Category:Color vision]] [[Category:Visual disturbances and blindness]] [[Category:X-linked recessive disorders]] [[Category:Wikipedia medicine articles ready to translate]] [[Category:Wikipedia neurology articles ready to translate]] ==حوالا== {{حوالا}} 6asswp3gpbq8gw96snbw74e0qhbn0i7 320001 320000 2025-06-19T11:58:16Z Ibne maryam 17680 320001 wikitext text/x-wiki '''رنگ انڌو پن''' (Colorblindness)، نظر ۾ رنگن جي خرابي (CVD) يا رنگ جي گهٽتائي، ڪجهه رنگن کي ڏسڻ يا رنگن ۾ فرق ڪرن جي صلاحيت ۾ گهٽتائي آهي. رنگ انڌو پن جي شدت گهڻو ڪري معمولي کان وٺي رنگن جي تصور جي مڪمل غير موجودگي تائين آهي. رنگ انڌو پن عام طور تي هڪ جنس سان ڳنڍيل وراثتي مسئلو آهي، جئين تي اها اک جي پردي (Retina) ۾ جيو گهرڙن جي ٽن طبقن، جيڪا نظر ۾ رنگن جي وچولي طور ڪم ڪندا آهن، مان هڪ يا وڌيڪ جي ڪارڪردگي ۾ تبديلي آهي. سڀ کان عام شڪل هڪ جينياتي حالت (پروٽان ۽ ڊيوٽان قسمن سميت) جي ڪري ٿيندي آهي جنهن کي پيدائشي ڳاڙهي-سائي رنگ جو انڌو پن سڏيو ويندو آهي، جيڪو 12 مان هڪ مرد (%8) ۽ 200 مان هڪ عورت (%0.5) کي متاثر ڪري ٿي. اها حالت مردن ۾ وڌيڪ عام آهي، ڇاڪاڻ ته هن جا ذميوار جين، مردانه X ڪروموسوم ۾ موجود هوندا آهن. رنگ انڌو پن جو سبب بڻجندڙ نادر جينياتي حالتن ۾ پيدائشي نيرو-پيلو رنگ انڌو پن (ٽريٽان قسم)، نيرو رنگ جي هڪ رنگي (monochromacy) ۽ ايڪروميٽوپسيا شامل آهن. رنگ انڌو پن اکين، بصري تنتي يا دماغ جي بصري حصي (optic lobe) کي طبيعي (Physical) يا ڪيميائي نقصان يا دوائن جي زهر (side effects)، جي نتيجي ۾ پڻ ٿي سگهي ٿو. ان کان سواء نظر ۾ رنگن کي تميز ڪرڻ جي صلاحيت قدرتي طور تي وڏي عمر ۾ گهٽجي ويندي آهي. ==ٻاهريان ڳنڍڻا== {{Commons category|Color blindness}} {{Wikisource|Popular Science Monthly/Volume 19/May 1881/Color-Blindness}} * [http://tigger.uic.edu/~hilbert/Glossary.html "A Glossary of Color Science."] {{Webarchive|url=https://web.archive.org/web/20151004164334/http://tigger.uic.edu/~hilbert/Glossary.html |date=4 October 2015 }} {{Authority control}} [[زمرو:بيماريون]] [[زمرو:آپٿالمولاجي]] [[زمرو:اکين جي بيماريون]] [[Category:Color blindness| ]] [[Category:Agnosia]] [[Category:Color vision]] [[Category:Visual disturbances and blindness]] [[Category:X-linked recessive disorders]] [[Category:Wikipedia medicine articles ready to translate]] [[Category:Wikipedia neurology articles ready to translate]] ==حوالا== {{حوالا}} o99uxsqf6bbu4rlba0rf7nmmy9bmyzg زمرو:آپٿالمولاجي 14 83090 319994 2025-06-19T11:48:22Z Ibne maryam 17680 نئون صفحو: [[زمرو:طب جا شعبا]] 319994 wikitext text/x-wiki [[زمرو:طب جا شعبا]] eua4lvwalsbkjhukd5xzouhhnvev51v 319995 319994 2025-06-19T11:48:36Z Ibne maryam 17680 319995 wikitext text/x-wiki [[زمرو:طب]] 1qfoectlx3x0w5vumhozau7u11sbfu0 319997 319995 2025-06-19T11:50:07Z Ibne maryam 17680 319997 wikitext text/x-wiki [[زمرو:علم طب جا شعبا]] lpihm7azly110bvujh7qhcz6aazp8b0 زمرو:اکين جي بيماريون 14 83091 319996 2025-06-19T11:48:58Z Ibne maryam 17680 نئون صفحو: [[زمرو:بيماريون]] 319996 wikitext text/x-wiki [[زمرو:بيماريون]] g1n35ykue3fbfzelto9tewb9ro3j4kt