وڪيپيڊيا sdwiki https://sd.wikipedia.org/wiki/%D9%85%D9%8F%DA%A9_%D8%B5%D9%81%D8%AD%D9%88 MediaWiki 1.45.0-wmf.9 first-letter ذريعات خاص بحث واپرائيندڙ واپرائيندڙ بحث وڪيپيڊيا وڪيپيڊيا بحث فائل فائل بحث ذريعات وڪي ذريعات وڪي بحث سانچو سانچو بحث مدد مدد بحث زمرو زمرو بحث باب باب بحث TimedText TimedText talk ماڊيول ماڊيول بحث Event Event talk زمرو:سائنس 14 2453 322561 322007 2025-07-11T08:56:29Z Ibne maryam 17680 322561 wikitext text/x-wiki {{Infobox library classification |DDC=500 |LCC=Q |UDC=5}} {{Portal|سائنس}} {{Commonscat|Science}} {{Cat main|سائنس}} [[Category:Main topic classifications]] [[Category:Inquiry]] [[Category:Academic disciplines]] [[Category:Science fiction themes]] {{Template:سرو براءِ زمرا}} {| align=center cellspacing="1" cellpadding="1" style="background: #f7f8ff; border: 1px solid #f7f8ff; padding: 5px; font-size: 16px; width: 100%;" |- ! style="background: #ccf;"|<font face="times new roman">عـــــــلم (سائنس) |} <font face="urdu naskh asiatype" size="3"><nowiki>'''سائنس'''</nowiki> جو مطلب علم آهي (جيسيتائين ڪوئي ان کان بهتر اصطلاح ملي) ۽ انجو مطلب مطالعو ڪري ڪنهن شيءِ جي باري ۾ ڄاڻڻ آهي، سائنس حصول علم جو هڪ منظم ذریعو آهي جنهن ۾ انسان براہ راست تجربي ۽ مشاهدي جي ذريعي سان سکي ٿو. سائنس ڪُل ڪائنات جو علم آهي ۽ هي علم انسان جو اجتماعي ورثو آهي. سائنس جو لفظ لاطيني ٻوليءَ جي لفظ scientia ۽ ان کان اَڳُ يوناني ٻوليءَ جي skhizein مان آيو آهي جنهن جي معنيٰ الڳ ڪرڻ، چاڪ ڪرڻ، ٽوڙڻ جي آهي. ان مخصوص غير فنوني علمن جي لاءِ جيڪي انسان سوچ ويچار حساب ڪتاب ۽ مطالعي جي زريعي حاصل ڪري ٿو، سائنس جي لفظ جو جديد استعمال سترهين صدي جي اوائل ۾ سامهون آيو. سائنس ۽ فنون (Arts) جي تفريق ڪجهه هيئن ڪري سگهجي ٿي ته آرٽس ۾ اهي شعبا اچي وڃن ٿا جيڪي انسان پنهنجي قدرتي هنر مندي ۽ صلاحيت جي زريعي ڪري ٿو ۽ سائنس ۾ اهي شعبا اچن ٿا جن ۾ سوچ ويچار، تحقيق ۽ تجربا ڪري ڪنهن شيءِ جي باري ۾ حقيقتون دريافت ڪيون وڃن ٿيون. سائنس ۽ آرٽس جي درميان هي حدفاصل ناقابلِ عبور ناهي ته جڏهن ڪنهن آرٽ يا هنر جو مطالعو منظم انداز ۾ هجي ته پوءِ هي ان آرٽ جي سائنس بڻجي وڃي ٿو. <small>''زمري سائنس جا مضمون جيڪا درڪار آهن:''</small> # <small>''[[سائنسي مضمون]] • [[سائنسي ماڊلنگ]] • [[سائنسي مشاهدو]] • [[طب ۽ صحت]] • [[ڪمپيوٽر ۽ انٽرنيٽ]] • [[مصنوعي زندگي]]''</small> {| style="float:center; clear:center; width: 100%; border: 0px solid #FFFFFF; color:#000; background-color:#ffffff; margin: 0 auto .5em; font-size:110%" |- ! align="right" colspan="3" | هن انگريزي فهرست ۾ ڪنهن نئين اندراج جي لاءِ [[سانچو:سائنس انگريزي|هن جڳه وڃو]]، پنهنجي اندراج ۾ حرف ابجد جي ترتيب ۽ جدول جي تناسب جو خيال رکندا. |- |} {{Commons|زمرو:سائنس}} [[زمرو:جانچ پڙتال]] [[زمرو:درسي علم]] [[زمرو:اصل مقالو جماعت بندي]] [[زمرو:انساني سرگرميون]] 4y6be1u5efm59fpi6nbd1iy1jnnsluf طبيب 0 11015 322569 133832 2025-07-11T10:12:15Z Ibne maryam 17680 322569 wikitext text/x-wiki [[عڪس:Typhoid_inoculation2.jpg|thumb|طبيب]] '''طبيب''' [[طب]] جي ڄاڻ رکندڙ ڪي چئبو آهي. لفظ "طب" قديم قبطي ٻولي سان آيو آهي، جنهن جو مطلب "حيران ڪندڙ عمل" يا "جادو" آهي. هن جي باقاعدي تعليم [[بقراط]]، جن کي حڪيم بقراط به سڏيو ويندو آهي، جي دور کان شروع ٿي. [[ننڍي کنڊ]] ۾ مشرقي يا متبادل طب جي ماهر لاء [[حڪيم]] جو لفظ به استعمال ٿيندو آهي، پر [[سنڌي بولي]] ۾ "طبيب" جو لفظ مناسب آهي، ڇو ته "حڪيم" جو لفظ دانشمند ماڻهن لاء به استعمال ٿيندو آهي. جديد طب جي ماهر کي عام طور تي "ڊاڪٽر" جي نالي سان سڃاڻو وڃي ٿو، پر هي اصطلاح معني جي لحاظ سان صحيح نا آهي، ٻين جڳھن تي اها لفظ جادوگرن لاء استعمال ٿيندو آهي، البت ڪنهن خاص علم جي ماهر لاء "[[ڊاڪٽر آف فلاسفي]]" (Ph.D) تسليم ٿيل آهي ۽ عام طور ڪنهن علم جي اعلي سند، [[پي ايڇ ڊي]] رکڻ واري کي ڊاڪٽر آف فلاسفي يا مختصر طور ڊاڪٽر جي امتيازي نالي سان سڏيو ويندو آهي. ==حوالا== {{حوالا}} [[زمرو:طب]] [[زمرو:سائنسي پيشا]] j4fvyemsh603ok3xtam6318elgfeowx 322570 322569 2025-07-11T10:12:53Z Ibne maryam 17680 322570 wikitext text/x-wiki [[عڪس:Typhoid_inoculation2.jpg|thumb|طبيب]] '''طبيب''' (Physician) [[طب]] جي ڄاڻ رکندڙ ڪي چئبو آهي. لفظ "طب" قديم قبطي ٻولي سان آيو آهي، جنهن جو مطلب "حيران ڪندڙ عمل" يا "جادو" آهي. هن جي باقاعدي تعليم [[بقراط]]، جن کي حڪيم بقراط به سڏيو ويندو آهي، جي دور کان شروع ٿي. [[ننڍي کنڊ]] ۾ مشرقي يا متبادل طب جي ماهر لاء [[حڪيم]] جو لفظ به استعمال ٿيندو آهي، پر [[سنڌي بولي]] ۾ "طبيب" جو لفظ مناسب آهي، ڇو ته "حڪيم" جو لفظ دانشمند ماڻهن لاء به استعمال ٿيندو آهي. جديد طب جي ماهر کي عام طور تي "ڊاڪٽر" جي نالي سان سڃاڻو وڃي ٿو، پر هي اصطلاح معني جي لحاظ سان صحيح نا آهي، ٻين جڳھن تي اها لفظ جادوگرن لاء استعمال ٿيندو آهي، البت ڪنهن خاص علم جي ماهر لاء "[[ڊاڪٽر آف فلاسفي]]" (Ph.D) تسليم ٿيل آهي ۽ عام طور ڪنهن علم جي اعلي سند، [[پي ايڇ ڊي]] رکڻ واري کي ڊاڪٽر آف فلاسفي يا مختصر طور ڊاڪٽر جي امتيازي نالي سان سڏيو ويندو آهي. ==حوالا== {{حوالا}} [[زمرو:طب]] [[زمرو:سائنسي پيشا]] tjdnbpw70b86ix16vgb7chh7osdjvy6 ماڊيول:Portal/images/c 828 16291 322525 54527 2025-07-10T20:00:26Z FireDragonValo 15235 "Switched" colors of the Canadian flag to the Pantone version as recommended by the government of Canada. 322525 Scribunto text/plain --[==[ This is the "C" list of portal image names. It contains a list of portal images for use with [[Module:Portal]] -- for portal names that start with the letter "C". For aliases to existing portal names, and for portal names that -- start with other letters, please use the appropriate page from the following list: -- [[Module:Portal/images/a]] - for portal names beginning with "A". -- [[Module:Portal/images/b]] - for portal names beginning with "B". -- [[Module:Portal/images/d]] - for portal names beginning with "D". -- [[Module:Portal/images/e]] - for portal names beginning with "E". -- [[Module:Portal/images/f]] - for portal names beginning with "F". -- [[Module:Portal/images/g]] - for portal names beginning with "G". -- [[Module:Portal/images/h]] - for portal names beginning with "H". -- [[Module:Portal/images/i]] - for portal names beginning with "I". -- [[Module:Portal/images/j]] - for portal names beginning with "J". -- [[Module:Portal/images/k]] - for portal names beginning with "K". -- [[Module:Portal/images/l]] - for portal names beginning with "L". -- [[Module:Portal/images/m]] - for portal names beginning with "M". -- [[Module:Portal/images/n]] - for portal names beginning with "N". -- [[Module:Portal/images/o]] - for portal names beginning with "O". -- [[Module:Portal/images/p]] - for portal names beginning with "P". -- [[Module:Portal/images/q]] - for portal names beginning with "Q". -- [[Module:Portal/images/r]] - for portal names beginning with "R". -- [[Module:Portal/images/s]] - for portal names beginning with "S". -- [[Module:Portal/images/t]] - for portal names beginning with "T". -- [[Module:Portal/images/u]] - for portal names beginning with "U". -- [[Module:Portal/images/v]] - for portal names beginning with "V". -- [[Module:Portal/images/w]] - for portal names beginning with "W". -- [[Module:Portal/images/x]] - for portal names beginning with "X". -- [[Module:Portal/images/y]] - for portal names beginning with "Y". -- [[Module:Portal/images/z]] - for portal names beginning with "Z". -- [[Module:Portal/images/other]] - for portal names beginning with any other letters. This includes numbers, -- letters with diacritics, and letters in non-Latin alphabets. -- [[Module:Portal/images/aliases]] - for adding aliases for existing portal names. Use this page for variations -- in spelling and diacritics, etc., no matter what letter the portal begins with. -- When adding entries, please use alphabetical order. The format of the images table entries is as follows: -- ["portal name"] = "image.svg", -- The portal name should be the name of your portal, in lower case. For example, the portal name for -- "Portal:United Kingdom" would be "united kingdom". The image name should be capitalised normally, and the "File:" -- namespace prefix should be -- omitted. ]==] return { ["calgary"] = "Flag of Calgary, Alberta.svg", ["california"] = "Flag of California.svg|border", ["california central valley"] = "California Central Valley county map.svg", ["california roads"] = "California blank.svg", ["calvinism"] = "Kreuz-hugenotten.svg", ["cambodia"] = "Flag of Cambodia.svg|border", ["cameroon"] = "Flag of Cameroon.svg|border", ["canada"] = "Flag of Canada (Pantone).svg|border", ["canada/kawartha lakes"] = "Kawartha Lakes flag.svg|border", ["canada roads"] = "Trans-Canada Highway shield.svg", ["canadian armed forces"] = "Canadian Forces emblem.svg", ["canadian communities"] = "Map Canada political-geo.png", ["canadian football"] = "Canadian football.png", ["canadian law"] = "Supreme Court of Canada.jpg", ["canadian politics"] = "Can-vote-stub.svg", ["canadian territories"] = "Northern Canada.svg", ["cannabis"] = "Cannabis leaf.svg", ["cape cod and the islands"] = "Nobska Lighthouse 1.jpg", ["cape verde"] = "Flag of Cape Verde.svg|border", ["capital district"] = "Empire State Plaza symbol 2.svg", ["capitalism"] = "Capitalismlogo.svg", ["caribbean"] = "Caribbean map blank.png", ["caribbean community"] = "Flag of CARICOM.svg", ["cars"] = "Sportcar sergio luiz ara 01.svg", ["cartoon"] = "Mad scientist.svg", ["cartoon network"] = "Cartoon Network.svg|border", ["catalan-speaking countries"] = "Siñal d'Aragón.svg|border", ["catholicism"] = "046CupolaSPietro.jpg|border", ["cats"] = "Cat03.jpg", ["celine dion"] = "Celine Dion Concert Singing 'Taking Chances' 2008.jpg", ["celtic studies"] = "Celtic-knot-insquare-39crossings.svg", ["central african republic"] = "Flag of the Central African Republic.svg|border", ["central america"] = "Age of Consent - Central America.svg", ["central asia"] = "Central Asian Games participating countries.PNG", ["cetaceans"] = "Sperm whale fluke.jpg", ["chad"] = "Flag of Chad.svg|border", ["chandigarh"] = "Ghandi_Bhawan_at_Punjab_University.jpg", ["channel islands"] = "Flag of Sark.svg|border", ["charles dickens"] = "Charles_Dickens_3.jpg", ["chechnya"] = "Flag of the Chechen Republic.svg|border", ["cheesehead"] = "Cheesehead.png", ["chemistry"] = "Nuvola apps edu science.svg", ["chennai"] = "Chennai High Court 1200x800.jpg", ["cher"] = "Cher Assinatura.png", ["cheshire"] = "Cheshire Flag.svg|border", ["chess"] = "Nuvola apps package games strategy.png", ["chicago"] = "Chicago city seal.png", ["children's literature"] = "Tom Sawyer 1876 frontispiece.jpg", ["chile"] = "Flag of Chile.svg|border", ["china"] = "China.svg", ["chittagong"] = "Beach View of the Saint Martin's Island.jpg", ["christian democracy"] = "Orange flag waving.svg", ["christianity"] = "P christianity.svg", ["christianity in china"] = "Blessing message.svg", ["christianity in india"] = "India with cross.svg", ["christian metal"] = "Guitar 1.svg", ["christian music"] = "Musical note nicu bucule 01.svg", ["christina aguilera"] = "CA2010PREIMRE.jpg", ["christmas"] = "Xmas tree.svg", ["chronology"] = "History.gif", ["cincinnati"] = "Cincinnati Dusk Light.JPG", ["city of port of spain"] = "POS Academy for the Performing Arts 03 2012 0960.JPG", ["city of san fernando"] = "HilltopSandoview.jpg", ["classical civilisation"] = "2006 01 21 Athènes Parthénon.JPG", ["classical music"] = "'A' (PSF).png", ["cleveland"] = "Flag of Cleveland, Ohio.svg|border", ["coffee"] = "Emblem-relax.svg", ["cold war"] = "Cold War Map 1959.svg", ["college basketball"] = "Basketball.png", ["college football"] = "NCAAFootball transparent.png", ["colombia"] = "Flag of Colombia.svg|border", ["colonialism"] = "PithHelmetTruman.jpg", ["color"] = "Colouring pencils.jpg", ["colorado"] = "Flag of Colorado.svg|border|alt=Flag of Colorado", ["comedy"] = "SMirC-laugh.svg", ["comics"] = "Speech balloon.svg", ["commonwealth games"] = "The Hydro - May 2012.JPG", ["commonwealth realms"] = "Commonwealth Realms map2.png", ["communism"] = "Symbol-hammer-and-sickle.svg", ["community"] = "P globe blue.png", ["community of christ"] = "USVA headstone emb-20.svg", ["companies"] = "Factory 1b.svg", ["complementary and alternative medicine"] = "Rod of Asclepius2.svg", ["computer graphics"] = "5-cell.gif", ["computer networking"] = "Bus icon.svg", ["computer programming"] = "8bit-dynamiclist.gif", ["computer science"] = "Internet map 1024.jpg", ["computer security"] = "Monitor padlock.svg", ["connecticut"] = "Seal of Connecticut.svg", ["conservatism"] = "DodgerBlue flag waving.svg", ["constructed languages"] = "Design conlang.png", ["contents"] = "Wikipedia's W.svg", ["contents/indexes"] = "Pointing-right.svg", ["contents/outlines"] = "Pointing-left.svg", ["cooperatives"] = "Twinpines.svg", ["córdoba"] = "Escudo ciudad de cordoba argentina.svg", ["cornhusker"] = "Nebraska silhouette.png", ["cornwall"] = "Flag of Cornwall.svg|border", ["cosmology"] = "Ilc 9yr moll4096.png", ["costa rica"] = "Flag of Costa Rica.svg|border", ["country music"] = "Steel guitar-KayEss.1.jpeg", ["creationism"] = "Michelangelo, Creation of Adam 04.jpg", ["cricket"] = "Cricketball.png", ["crimea"] = "Flag of Crimea.svg|border", ["criminal justice"] = "Scale of justice 2.svg", ["croatia"] = "Flag of Croatia.svg|border", ["crusades"] = "Blason ville fr Villejust (Essonne).svg", ["crustaceans"] = "Charybdis japonica.jpg", ["cryptography"] = "Crypto key.svg", ["cryptozoology"] = "Okapi2.jpg", ["cuba"] = "Flag of Cuba.svg|border", ["cultural heritage of serbia"] = "Spomenik Kulture.svg", ["culture"] = "P culture.svg", ["cumbria"] = "Herdwick sheep crop.jpg", ["current events"] = "Ambox globe.svg", ["current events/turkey"] = "Wikinews-logo.png", ["cycling"] = "Cycling pictogram.svg", ["cyprus"] = "Satellite image of Cyprus, cropped.jpg|border", ["czech republic"] = "Flag of the Czech Republic.svg|border", } 6o45prvren0h51qwj2dcpw5y8o30pdw زمرو:سائنسدان 14 17014 322562 317309 2025-07-11T08:58:38Z Ibne maryam 17680 322562 wikitext text/x-wiki {{Commons category|Scientists}} {{cat main|سائنسدان}} {{ٻيا زمرا|Engineers|Wikipedia categories named after scientists|Inventors|Researchers|Scholars|Academics}} [[زمرو:سائنس]] [[زمرو:شخصيتون]] [[زمرو:سائنس سان لاڳاپيل شخصيتون]] tbzul308yifppyz0eps6g427y72tvb1 سامسنگ 0 29351 322538 299259 2025-07-11T04:41:32Z Cicihwahyuni6 20500 322538 wikitext text/x-wiki {{About|the conglomerate|the electronics subsidiary|Samsung Electronics|other uses}} {{Distinguish|Samsun|Samson|Sanson|Sampson}} {{Infobox company | name = Samsung Group | native_name = {{Korean|삼성그룹|labels=no}} | romanized_name = | logo = Samsung wordmark.svg | logo_size = 240px | logo_caption = | image = Samsung headquarters.jpg | image_size = 250px | image_caption = [[Samsung Town]] in the [[Gangnam station]] area of [[Seoul]] | type = [[Privately held company|Private]] | industry = [[Conglomerate (company)|Conglomerate]] | founder = [[Lee Byung-chul]] | area_served = Worldwide | key_people = [[Lee Jae-yong]] ([[chairman]]) | products = [[Clothing]], [[Automotive industry|automotive]], [[Chemical substance|chemicals]], [[consumer electronics]], electronic components, medical equipment, [[semiconductor]]s, [[solid-state drive]]s, [[Dynamic random-access memory|DRAM]], [[flash memory]], [[ship]]s, [[telecommunications equipment]], [[home appliances]]<ref>{{Cite web |title=Home and Kitchen Appliance showcase |url=http://www.samsung.com/us/showcase/smart-home-appliance-washer-dryer-and-refrigerators/ |url-status=live |archive-url=https://web.archive.org/web/20170309054117/http://www.samsung.com/us/showcase/smart-home-appliance-washer-dryer-and-refrigerators/ |archive-date=9 March 2017 |publisher=Samsung}}</ref> | services = Advertising, [[construction]], entertainment, [[financial services]], hospitality, information and communications technology, medical and health care services, [[retail]], [[shipbuilding]], [[Foundry model|semiconductor foundry]] | subsid = [[Cheil Worldwide]]<br />[[Samsung Asset Management]]<br />[[Samsung Biologics]]<br />[[Samsung C&T Corporation]]<br />[[Samsung Electro-Mechanics]]<br />[[Samsung Electronics]]<br />[[Samsung Engineering]]<br />[[Samsung Fire & Marine Insurance]]<br />[[Samsung Heavy Industries]]<br />[[Samsung Life Insurance]]<br />[[Samsung SDI]]<br />[[Samsung SDS]]<br />[[Samsung Securities]] | founded = {{start date and age|df=yes|1938|3|1}} in [[Daegu]], [[Korea under Japanese rule|Japanese Korea]] | hq_location = Samsung Digital City | hq_location_city = [[Yeongtong-gu]], [[Suwon]] | hq_location_country = [[South Korea]]<ref name="samsung.co.kr">{{Cite web |title=삼성계열사 전자 – 삼성그룹 홈페이지 |url=http://samsung.co.kr/about/affiliate.do |url-status=dead |archive-url=https://web.archive.org/web/20160920104601/http://samsung.co.kr/about/affiliate.do |archive-date=20 September 2016}}</ref> | website = {{URL|https://www.samsung.com/|samsung.com}} }}'''سام سنگ''' (Samsung) ھڪ جڳ مشھور اليڪٽرونڪ [[ڪمپني]] آھي. جنھن جون مختلف مصنوعات آھن. سامسنگ گروپ (ڪورين: [samsʌŋ]؛ SΛMSUNG جي طور تي اسلوب ٿيل) هڪ ڏکڻ ڪوريا جي ملٽي نيشنل پيداواري تنظيم آهي جنهن جو هيڊ ڪوارٽر سامسنگ ڊجيٽل سٽي، سوون، ڏکڻ ڪوريا ۾ آهي. اهو ڪيترن ئي لاڳاپيل ڪاروبار تي مشتمل آهي، انهن مان گهڻا سامسنگ برانڊ تحت متحد آهن، ۽ سڀ کان وڏو ڏکڻ ڪورين چائبول (ڪاروباري جماعت) آهي. 2020 تائين سامسنگ وٽ اٺين نمبر تي وڏي عالمي برانڊ ويليو آهي. سام سنگ جو بنياد سال 1938ع ۾ لي۔بيونگ۔چول Lee) Byung-chul) هڪ واپاري ڪمپني طور رکيو. ايندڙ ٽن ڏهاڪن ۾، گروپ مختلف علائقن ۾ فوڊ پروسيسنگ، ٽيڪسٽائل، انشورنس، سيڪيورٽيز، ۽ پرچون شامل آهن. سامسنگ 1960 جي ڏهاڪي جي آخر ۾ اليڪٽرانڪس جي صنعت ۾ داخل ٿيو ۽ 1970 جي وچ ڌاري تعميراتي ۽ جهاز سازي جي صنعتن ۾؛ اهي علائقا ان جي ايندڙ ترقي کي هلائي سگهندا. 1987 ۾ لي جي موت کان پوء، سام سنگ کي پنجن ڪاروباري گروپن، سام سنگ گروپ، شِنشيگائي (Shinsegae) گروپ، سی جی (CJ) گروپ، هانسول (Hansol) گروپ ۽ جونگ آنگ (JoongAng) گروپ ۾ ورهايو ويو. سام سنگ جی قابل ذڪر صنعتي وابستگين ۾ سامسنگ اليڪٽرانڪس (دنيا جي سڀ کان وڏي انفارميشن ٽيڪنالاجي ڪمپني، ڪنزيومر اليڪٽرانڪس ٺاهيندڙ ۽ چپ ٺاهيندڙ 2017 جي آمدني جي حساب سان)، سام سنگ ھیوی انڈسٹریز (Samsung Heavy Industries) (سال 2010ع جي آمدني جي حساب سان ماپيل دنيا جو ٻيو نمبر وڏو جهاز ساز ڪمپني) ۽ سام سنگ انجینئرنگ (Samsung Engineering) ۽ سام سنگ Samsung C&T Corporation (بالترتيب. دنيا جي 13هين ۽ 36هين وڏي تعميراتي ڪمپنيون). ٻين قابل ذڪر ماتحت ادارن ۾ سامسنگ لائف انشورنس (دنيا جي 14هين وڏي لائف انشورنس ڪمپني)، سامسنگ ايورلينڊ (ايورلينڊ ريسارٽ جو آپريٽر، ڏکڻ ڪوريا ۾ سڀ کان پراڻو ٿيم پارڪ) ۽ چيل ورلڊ وائڊ (دنيا جي 15هين وڏي اشتهاري ايجنسي، جيئن 2012 جي آمدني جي حساب سان) شامل آهن. '''Samsung Group'''<ref>{{Cite web |title=SAMSUNG ELECTRONICS Co., Ltd. 2020 Half-year Business Report |url=https://images.samsung.com/is/content/samsung/p5/global/ir/docs/2020_Half_Year_Report.pdf |access-date=8 September 2020}}</ref> ({{Korean|hangul=삼성|rr=samseong}} {{IPA-ko|samsʌŋ|}}; stylized as '''SΛMSUNG''') is a South Korean [[Multinational corporation|multinational]] manufacturing [[Conglomerate (company)|conglomerate]] headquartered in Samsung Digital City, [[Suwon]], South Korea.<ref name="samsung.co.kr" /> It comprises numerous affiliated businesses,<ref name="samsung.co.kr" /> most of them united under the Samsung brand, and is the largest South Korean {{lang|ko-Latn|[[chaebol]]}} (business conglomerate). {{As of|2020|post=,}} Samsung has the eighth-highest global [[brand valuation|brand value]].<ref>{{Cite web|date=18 October 2020|title=The 2020 World's Most Valuable Brands|url=https://www.forbes.com/the-worlds-most-valuable-brands/|archive-url=https://web.archive.org/web/20201018162839/https://www.forbes.com/the-worlds-most-valuable-brands/|archive-date=18 October 2020|work=[[Forbes]]}}</ref> Samsung was founded by [[Lee Byung-chul]] in 1938 as a [[trading company]]. Over the next three decades, the group diversified into areas including food processing, textiles, insurance, securities, and retail. Samsung entered the [[electronics industry]] in the late 1960s and the construction and shipbuilding industries in the mid-1970s; these areas would drive its subsequent growth. Following Lee's death in 1987, Samsung was separated into five business groups&nbsp;– Samsung Group, [[Shinsegae]] Group, [[CJ Group]] and [[Hansol]] Group, and [[JoongAng Ilbo|JoongAng]] Group. Notable Samsung industrial affiliates include [[Samsung Electronics]] (the world's [[List of largest technology companies by revenue|largest information technology company]], [[Consumer electronics|consumer electronics maker]] and [[Semiconductor industry|chipmaker]] {{as of |alt=measured by 2017 revenues |2017 |post=), }}<ref>{{Cite news|title=Samsung topples Intel to become the world's largest chipmaker – TechCrunch|work=techcrunch.com|url=https://techcrunch.com/2018/01/30/samsung-intel-worlds-largest-chipmaker/|url-status=live|access-date=25 May 2018|archive-url=https://web.archive.org/web/20180525234650/https://techcrunch.com/2018/01/30/samsung-intel-worlds-largest-chipmaker/|archive-date=25 May 2018}}</ref><ref>{{Cite news|last=Mu-Hyun|first=Cho|title=Samsung's logic chip biz turns to AI chips and 5G for change of fortune {{!}} ZDNet|language=en|work=ZDNet|url=https://www.zdnet.com/article/samsungs-logic-chip-biz-developing-ai-chip-5g-for-change-of-fortune/|url-status=live|access-date=25 May 2018|archive-url=https://web.archive.org/web/20180703174953/https://www.zdnet.com/article/samsungs-logic-chip-biz-developing-ai-chip-5g-for-change-of-fortune/|archive-date=3 July 2018}}</ref> [[Samsung Heavy Industries]] (the world's second largest [[Shipbuilding|shipbuilder]] {{as of |alt=measured by 2010 revenues |2010 |post=), }}<ref>{{Cite news|last=Park|first=Kyunghee|date=28 July 2009|title= Samsung Heavy Shares Gain on Shell's Platform Orders (Update1)|publisher=Bloomberg|url=https://www.bloomberg.com/apps/news?pid=newsarchive&sid=aO0FeeTB6_0Y|url-status=dead|access-date=11 November 2010|archive-url=https://web.archive.org/web/20110924131022/http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aO0FeeTB6_0Y|archive-date=24 September 2011}}</ref> and [[Samsung Engineering]] and [[Samsung C&T Corporation]] (respectively the world's 13th and 36th largest construction companies).<ref>{{Cite web|title=The Top 225 International Contractors 2013|url=http://enr.construction.com/toplists/InternationalContractors/001-100.asp|url-status=deviated |archive-url=https://web.archive.org/web/20130530102754/http://enr.construction.com/toplists/Top-International-Contractors/001-100.asp|archive-date=30 May 2013|access-date=25 August 2013|publisher=Engineering News-Record }}</ref> Other notable subsidiaries include [[Samsung Life Insurance]] (the world's 14th largest life insurance company),<ref>{{Cite news|date=20 July 2009|title=Global 500 2009: Industry |work=FORTUNE |publisher=CNN Money |url=https://money.cnn.com/magazines/fortune/global500/2009/industries/183/index.html|url-status=live|access-date=4 September 2010|archive-url=https://web.archive.org/web/20100831010459/http://money.cnn.com/magazines/fortune/global500/2009/industries/183/index.html|archive-date=31 August 2010}}</ref> Samsung Everland (operator of [[Everland Resort]], the oldest [[theme park]] in South Korea)<ref>{{Cite news|last=Valhouli|first=Christina|date=21 March 2002|title=The World's Best Amusement Parks|work=[[Forbes]]|url=https://www.forbes.com/2002/03/21/0321feat_6.html|url-status=dead|access-date=11 September 2010|archive-url=https://web.archive.org/web/20100822061935/http://www.forbes.com/2002/03/21/0321feat_6.html|archive-date=22 August 2010}}</ref> and [[Cheil Worldwide]] (the world's 15th largest advertising agency, {{as of |alt=as measured by 2012 revenues |2012 |post=).}}<ref>{{Cite web|title=Cheil Worldwide Inc (030000:Korea SE)|url=http://investing.businessweek.com/research/stocks/snapshot/snapshot.asp?ticker=030000:KS|url-status=dead|archive-url=https://web.archive.org/web/20121005152815/http://investing.businessweek.com/research/stocks/snapshot/snapshot.asp?ticker=030000%3AKS|archive-date=5 October 2012|access-date=16 September 2010|publisher=businessweek.com}}</ref><ref>{{Cite web|date=26 April 2010|title=Cheil Worldwide (030000 KS)|url=http://www.kdbdw.com/bbs/download/162067.pdf?attachmentId=162067|url-status=live|archive-url=https://web.archive.org/web/20131004213242/http://www.kdbdw.com/bbs/download/162067.pdf?attachmentId=162067|archive-date=4 October 2013|access-date=8 May 2013|publisher=kdbdw.com}}</ref> ==تاريخ== سامسنگ ھڪ ڪمپني آھي جنھن جي شروعات سال 1967 ۾ ٿي. ھيءَ اليڪٽرونڪ جي ھڪ سٺي قابل اعتماد ڪمپني آھي. ==پراڊڪٽس== سامسنگ موبائيل، سامسنگ فرج، سامسنگ ايل اي ڊي ٽي وي، سميت ٻيون ڪيتريون ئي مصنوعات سامسنگ جون آھن. == حوالا == {{حوالا}} [[زمرو:سامسنگ]] [[زمرو:ٽيڪنالاجي]] [[زمرو:ٽيڪنيڀياس]] [[زمرو:موبائل فون ٺاهيندڙ]] [[زمرو:سامسنگ]] r4cf4pln5il0e0g1ayxto9u1j7nn8w7 زمين تي پاڻيءَ جي اصليت 0 30728 322565 314480 2025-07-11T09:30:57Z KaleemBot 10779 خودڪار: [[زمرو:سائنسي مسئلا]] جو اضافو + ترتيب 322565 wikitext text/x-wiki '''زمين تي پاڻيءَ جي اصليت''' [[ڌرتي]] تي جيڪو پاڻي نظر اچي ٿو، اهو ان جي ٺھڻ وقت نہ هو. سائنسدانن جي خيال ۾ ڌرتيءَ تي موجود پاڻي اصل ۾ [[پوڇڙ تارا|پُڇڙ تارن]] ۽ سيارچن جي ڌرتيءَ سان ٽڪرائڻ جي ذريعي آيو هو. ان وقت جڏهن [[آڪاش منڊل|سج منڊل]] (نظام شمسي) اڄ کان 4.6 ارب سال پهرين وجود ۾ آيو هو. تڏهن پاڻي جا ذرا ان دوڙ ۽ پٿرن جي واچوڙي ۾ موجود هئا. پر زمين جي گرمي پد وڌيل هئڻ سبب پاڻي بخار ٿي مٿي هليو ويندو هو. ان دوران ايندڙ 70 ڪروڙ سالن تائين هن گرھ يا ڌرتيءَ تي پُڇڙ تارن ۽ سيارچن جو وسڪارو ٿيندو رهيو. ڌرتي سان ٽڪرائڻ وارن يا وسڻ وارن پُڇڙ تارن ۽ سيارچن ۾ برف موجود هئي، جيڪا پوءِ رجي پاڻيءَ جي صورت اختيار ڪري وئي.<ref>[http://www.jahanescience.com/2016/07/how.it.works.issue.83.brain.dump.earth.water.html کیا زمین پر موجود تمام پانی یہاں پر اس وقت سے ہے جب سے زمین بنی ہے ؟ - جہان سائنس<!-- Bot generated title -->]</ref> ==حوالا== {{حوالا}} [[زمرو:ارضيات]] [[زمرو:پاڻي]] [[زمرو:زمين]] [[زمرو:سائنسي مسئلا]] [[زمرو:شروعات]] [[زمرو:آبي سائنس]] [[زمرو:آغاز]] rc07xiqjj7rb25ifwancsbv531pfdfh آئزڪ نيوٽن 0 31406 322507 322360 2025-07-10T15:39:33Z Abdullah1601 18012 322507 wikitext text/x-wiki {{Infobox person | honorific_prefix = سر | name = آئزڪ نيوٽن | honorific_suffix = {{post-nominals|country=GBR|size=100|PRS}} | image = GodfreyKneller-IsaacNewton-1689.jpg | alt = Portrait of man in black with shoulder-length, wavy brown hair, a large sharp nose, and a distracted gaze | caption = نيوٽن جو پورٽريٽ جيڪو گاڊفري ميلر | birth_date = 25 ڊسمبر 1642 | birth_place = {{nowrap|ھڪ ڳوٺ [[وولسٿورپ]]}} ،[[لنڪن شاير ڪائونٽي]], [[ڪنگڊم آف انگلينڊ]] | death_date = 20 مارچ 1727 | death_place = [[ڪينسنگٽن]]، [[مڊل سيڪس]], انگلينڊ | resting_place = [[ويسٽ منسٽر ايبي]] | nationality = انگلش | fields = {{unbulleted list | {{hlist |[[فزڪس]] |[[نيچرل فلاسافي]]}} | {{hlist |[[الڪيمي]] }} | {{hlist |[[ميٿميٽڪس]] |[[فلڪيات]]}} | {{hlist |معاشيات}} }} | workplaces = {{unbulleted list |[[يونيورسٽي آف ڪيمبرج]] |[[رايل سوسائٽي]] |[[رايل منٽ]]}} | alma_mater = [[ٽرنٽي ڪاليج ڪيمبرج]] | academic_advisors = {{unbulleted list | [[Isaac Barrow]]<ref>Feingold, Mordechai. [http://www.oxforddnb.com/view/article/1541 Barrow, Isaac (1630–1677)], ''Oxford Dictionary of National Biography'', [[Oxford University Press]], September 2004; online edn, May 2007; retrieved 24 February 2009; explained further in Mordechai Feingold's "[https://www.jstor.org/stable/236236 Newton, Leibniz, and Barrow Too: An Attempt at a Reinterpretation]" in ''Isis'', Vol. 84, No. 2 (June 1993), pp. 310–38.</ref> | [[Benjamin Pulleyn]]<ref>[http://www.chlt.org/sandbox/lhl/dsb/page.50.a.php Newton profile], ''Dictionary of Scientific Biography'', n.4.</ref><ref name="The Newton Handbook">{{harvnb|Gjertsen|1986|page={{page needed|date=August 2014}}}}</ref>}} | notable_students = {{unbulleted list |[[Roger Cotes]] |[[William Whiston]]}} | awards = [[فيلو آف رايل سوسائٽي]] (1672)<ref name=frs>{{cite web|archiveurl=https://web.archive.org/web/20150316060617/https://royalsociety.org/about-us/fellowship/fellows|archivedate=16 March 2015|url=https://royalsociety.org/about-us/fellowship/fellows|publisher=Royal Society|location=London|title=Fellows of the Royal Society}}</ref> <br> [[نائٽ بيچلر]](1702) | known_for = {{unbulleted list |[[نيوٽن جي ميڪانزم]] |[[ڪائنات جي ڪشش ثقل]]|[[ڪيلڪيولس]]| [[نيوٽن جي حرڪت جو قانون]] |{{hlist |[[علم مناظر]] |[[بائنوميل سيريز]]}} |اهم شاگرد: [[روجر ڪوٽس]] ، [[وليم وچسٽن]] |{{hlist |''[[فلاسافي آف نيچرل پرنسپلز ]]'' |[[نيوٽن جو ميٿڊ]]}} }} | signature = Isaac Newton signature ws.svg | signature_alt = Is. Newton }} '''آئزڪ نيوٽن''' (Isaac Newton) [[فزڪس|طبیعیات]] جو وڏو ماهر هو. هن حرڪت ۽ ڪشش ثقل سميت ڪيترن ئي معاملن جي نه رڳو وضاحت ڪئي پر ان کي تجربن وسيلي ثابت به ڪيو ۽ ان جا قانون به جوڙيا. هن ڪهڪشائن ۽ ستارن جي رازن تان پردو به کنيو. کيس سندس انهن ئي خدمتن عيوض اهو مقام مليو.<ref name="سنڌيانا">[http://books.sindhsalamat.com/book.php?book_id=312 ''تخليق خالق کانسواءِ، ليکڪ عمر عطيلا ايرگي، سنڌيڪار مظفر بخاري''] {{Webarchive|url=https://web.archive.org/web/20170912095824/http://books.sindhsalamat.com/book.php?book_id=312 |date=2017-09-12 }} ''سنڌ سلامت ڪتاب گھر</ref> آئزڪ نيوٽن سال 1642ع ۾ انگلينڊ ۾ ڄائو هو. اهو ساڳيو ئي سال هو، جڏهن گئليلو لاڏاڻو ڪيو هو. نيوٽن کي تمام گهڻي مڃتا به ملي ۽ گئليلو وانگر سندس چهري تي افسوس جو ڪوبه نشان موجود نه هو. برنارڊ رسل چوي ٿو “نيوٽن کان پوءِ رڳو البرٽ آئنسٽائين ئي آهي جنهن جي ڪم ۾ نيوٽن جهڙي خوبصورتي جا پاڇولا نظر اچن ٿا.<ref name="سنڌيانا"/> نيوٽن پنهنجي لئباريٽريءَ ۾ سج منڊل (Solar System) جو هڪ ميڪنيڪل ماڊل (Mechanical Model) تيار ڪيو. اهو ماڊل هڪ ليور کي حرڪت ڏيڻ سان متحرڪ ٿي ويندو هو ۽ سمورا گرهه سج جي چوڌاري گردش ڪرڻ لڳندا هئا. ھن جي ماء جو نالو ھانا ايسڪف (Hannah Ayscough) ھو. ھي پنھنجي والد جي وفات کان پوءِ پيدا ٿيو. ھن جي پيء جو نالو آئزڪ نيوٽن ھو ۽ ساڳيو نالو ھن تي رکيو ويو.<ref>{{cite journal|last1=Storr|first1=Anthony|title=Isaac Newton|journal=British Medical Journal (Clinical Research Edition)|date=December 1985|volume=291|issue=6511|page=1779|jstor=29521701|publisher=BMJ|doi=10.1136/bmj.291.6511.1779}}</ref> جڏھن ٽن سالن جو ھو تہ ھن جي ماء ٻي شادي ڪري نئين مڙس سان رھڻ شروع ڪيو ۽ نيوٽن پنھنجي نانيء جي حوالي ٿيو. ٻي شادي ڪرڻ جي ڪري ھي ماء کي پسند نہ ڪندو ھو نہ ئي وري ھن جي ويڳي پيءُ سان انسيت ٿي سگھي.<ref>{{cite journal|last1=Keynes|first1=Milo|title=Balancing Newton's Mind: His Singular Behaviour and His Madness of 1692–93|journal=Notes and Records of the Royal Society of London|date=20 September 2008|volume=62|issue=3|page=293|jstor=20462679|doi=10.1098/rsnr.2007.0025}}</ref> سندس ماءُ کي ٻئي مڙس مان ٽي ٻار ٿيا.{{sfn|Westfall|1980|p=55}} ننڍپڻ ۾ ڏاڍو ذھين ٻار ھيو پر اسڪول ۾ ھن کي دلچسپي ڪانہ ھئي. سال 1659ع ۾ جڏھن نوجوان ھو تہ ھن جي ماء کيس اسڪول مان اھو سوچي ڪڍرائي ڇڏيو تہ شايد ھڪ سٺو ھاري بڻجي سگھي پر پوء ڏٺائين تہ ھن جي دلچسپي جا سامان ڪجهه ٻيا آھن. ارڙھن سالن جي عمر ۾ ڪيمبرج يونيورسٽي ۾ داخل ٿيو جتي ھن سائنس ۽ رياضي ۾ پاڻ کي وقف ڪري ڇڏيو، ۽ جلد ئي پاڻ چڱي ڀلي تحقيق جي قابل ٿي ويو. 25 کان 27 سالن جي عمر ۾ ھن سائنس جي بنيادن کي لوڏائي ڇڏيو.<ref>{کتاب:سو عظیم آدمی؛ مصنف: مائیکل ھارٹ؛ پیج 31؛ تخلیقات پبلیشرز لاہور}</ref> ھي پنھنجي تحقيق ۾ بنيادي نظرين کي 1669ع تائين واضح ڪري چُڪو هو پر ان جا ڪافي نظريا بعد ۾ منظر عام تي آيا. ھن جا شروع وارا نظريا روشني جي باري ۾ ھئا. ھن تجربن ذريعي ثابت ڪيو تہ روشني انڊلٺي رنگن جو مڪسچر آھي.<ref>{کتاب:سو عظیم آدمی؛ مصنف: مائیکل ھارٹ؛ پیج 31؛ تخلیقات پبلیشرز لاہور}</ref> ماڻهو فطرت جو اهو حصو آهي جنهن جي ذريعي فطرت پنهنجو پاڻ سوچي ٿي. بيشڪ سوچ ۽ سمجھ وسيلي ئي ڪنھن بہ شيء کي تبديل ڪري سگهجي ٿو. انهي سوچ جي پُرتجسس سفر ۾ ڪجهه انسان اهڙا بہ شامل آهن جن جي بدولت سموري انسان ذات هڪ دور کان ڇلانگ ڏئي ٻئي دور ۾ بہ داخل ٿي آهي. آئزڪ نيوٽن بہ انهن ئي چند عظيم دماغن مان هڪ آهي جن سموري انسان ذات جي فطرت متعلق سوچ جي ڪاياپلٽ ڪئي. نيوٽن جو تعلق جنھن دور سان آهي ان کي روشن خياليءَ وارو زمانو سڏيو ويندو آهي ۽ واقعي بہ ڏٺو وڃي تہ نيوٽن پنھنجي ڪارنامن جي ڪري انهي روشن خيالي جو آسمان رهيو آهي. جنھن سال ۾ سائنس جي بزرگ گيلیليو جو موت ٿيو اُن ئي سال ۾ ڪرسمس واري ڏينهن تي نيوٽن جو جنم انگلينڊ جي هڪ ننڍڙي ڳوٺ وولس ٿورپ ۾ ستڙيي (وقت کان اڳ ڄاول) ڪمزور ٻار طور ٿيو جنهن جي باري ۾ خيال ڪيو ويو تہ شايد بچي نہ سگهي. انگلينڊ ۾ 1640ع وارو ڏهاڪو تمام خطرناڪ گهرو ويڙھ ۽ پليگ جھڙي موتمار بيماري جو رهيو. ڪافي ماڻهن جو خيال هيو تہ بس هاڻي قيامت ويجهي آهي ۽ انسان ذات جو خاتمو ٿي ويندو. سندس جنم کان 3 مھينا پھريان سندس والد (جنھن جو نالو بہ آئزڪ نيوٽن هيو) جو انتقال ٿي ويو، تنھنڪري سندس ماءُ ڪجهه سالن کانپوءِ ٻي شادي ڪري ڇڏي، جنھن جا نيوٽن جي زندگي تي تمام گھرا اثر رهيا مثال طور اڪيلائپ، پيءُ جي پيار کان محرومي وغيره. شروعاتي تعليم ڪنگز ڪاليج مان پرائڻ بعد سندس ماءُ غربت سبب کيس واپس پنهنجي ڳوٺ مال جو واڙو سنڀالڻ لاءِ گهرائي ورتو. سندس پُرتجسس دماغ جو اندازو سندس ٻاروتڻ وارين حرڪتن مان لڳائي سگهجي ٿو، مثال طور هڪ دفعي طوفان تمام تيز هيو ۽ ميڊم هانا (نيوٽن جي ماءُ) مال جي وٿاڻ بابت شديد پريشاني ۾ سوچي رهي هئي تہ الائي وٿاڻ جا در ۽ دريون هوا ۾ ڀڄي نہ پيا هجن. انهي پريشاني کي حل ڪرڻ لاءِ ميڊم، نيوٽن کي وٿاڻ طرف موڪليو تہ جيئن هو پرگهور لھي اچي. ڪافي دير گذرڻ باوجود بہ جڏهن نيوٽن واپس نہ آيو تہ ميڊم پاڻ وڃي وٿاڻ پهتي. ننڍڙو وٿاڻ جا در ۽ دريون چڪاسڻ بجاءِ، ٻاهر ٺھيل ڪاٺ جي چبوترن مٿان ٽپ ڏئي تيز هوا جو پريشر چيڪ ڪرڻ ۾ مصروف هيو! ننڍي لاءِ نيوٽن وقت ڏسڻ لاءِ پنھنجي ڪمري جي ڀت تي هڪ شمسي گهڙيال ۽ هوا تي هلندڙ چڪي ٺاهي. سندس ماءُ کي جنهن مھل پڪ ٿي وئي تہ نيوٽن سندس مال وارو واڙو نہ سنڀالي سگهندو تہ هُن کيس ڪئمبريج يونيورسٽي جي ٽرنٽي ڪاليج ۾ وڌيڪ تعليم حاصل ڪرڻ لاءِ موڪلي ڇڏيو. غربت سبب پھريان ڪجهه سال نيوٽن ڪاليج جي هاسٽل تي ٻين شاگردن جي ڪمرن جي صفائي سٿرائي وارو ڪم ڪري ڪجهه پئسا ڪمائيندو هيو، جيسيتائين کيس اسڪالرشپ ملي. سندس پڙهائي واري دور ۾ فطرت متعلق ارسطو جا ٻہ هزار سال پراڻا نظريا پڙهايا ويندا هيا ڇاڪاڻ تہ اهي ڪليسائيت جي لاءِ گهڻا نقصانڪار نہ هيا مثال طور ارسطو موجب ڪو بال يا هنداڻو هوا ۾ اڇلائڻ کان پوءِ واپس ڌرتي تي ان ڪري ٿو ڪري ڇاڪاڻ تہ هنداڻي يا بال ۾ هيٺ ڪرڻ جي صلاحيت (ڪشش) موجود آهي. دونھون يا ٻاڦ ۽ ڪڪر آسمان طرف ان ڪري ٿا وڃن ڇاڪاڻ تہ انهن ۾ مٿي وڃڻ جي صلاحيت (ليوٽي) موجود آهي. نيوٽن ان قسم جي نصاب مان مطمئن نہ هيو تنھنڪري هن پنهنجي لاءِ سوالن جي الڳ فھرست تيار ڪئي جنھن کي هُو 'پُختا فلسفياڻا سوال' چوندو هيو، جن ۾ ڪشش، روشني، حرارت، حرڪت، مقناطيسيت، سيارن ۽ ستارن متعلق 45 اهم سوال شامل هيا. نيوٽن جو چوڻ هيو تہ هڪ صحيح سوال ڪنھن بہ مسئلي جو اڌ جواب هوندو آهي. سندس انهي تجسس کيس گيلیليو، ديڪارت، ڪوپرنيڪس ۽ ڪيپلر کي پڙهڻ ۽ انهن جي سوالن ۽ نتيجن تي پنھنجا سوال اٿارڻ لاءِ مجبور ڪيو. نيوٽن کان اڳ وارا سائنسدان گرهن جي گردش متعلق ڪافي ڳالهيون ٻڌائي ويا هيا پر انهن ۾ بنيادي سوالن جا جواب شامل نہ هيا مثال طور گرھ سج جي چوڌاري چڪر ڪيئن ٿا لڳائن ۽ ڇو ٿا لڳائن؟ اها ڪھڙي قوت آهي جيڪا خلائي جسمن کي مٿي خلا ۾ ئي رکيو ويٺي آهي؟ وغيره. تنھن دور ۾ يورپ ۾ ڪليسا جي بالادستي سبب نيوٽن اهو چئي اڳتي وڌيو تہ خُدا هي ڪائنات ٺاهي آھي، اچو تہ پاڻ ان جا قانون ڳوليون. نيوٽن انهن سوالن جا جواب ڳولڻ جي ڪوشش شروع ڪئي تہ کيس تنھن دور جي رائج رياضيء جون کوٽون نظر آيون، جنھن سبب ڪا خاطر خواه پيش رفت ممڪن نہ هئي. ان ڏس ۾ هُن 'ڪيلڪيولس' ايجاد ڪيو ۽ ان جديد رياضياتي ايجاد جي بدولت شمسي نظام ۾ موجود گرهن جي مدار ۽ محور کي دريافت ڪيو ۽ اهو واضح ڪرڻ ۾ ڪامياب ويو تہ اها ڪائناتي ڪشش ثقل آهي جيڪا خلائي جسمن کي پنهنجن پنهنجن مدارن ۾ رکيو ويٺي آهي. نيوٽن واري زماني تائين اهو سمجهيو ويندو هيو تہ اڇو رنگ پاڪ، نج ۽ خُدا جي نشاني آهي. نيوٽن ان ڏس ۾ روشني تي تجربا ڪيا ۽ اهو ثابت ڪيو تہ اڇو رنگ نج ناهي پر مختلف رنگن جو ميلاپ آهي. سندس مشهور زمانہ اسپيڪٽرم تجربي بدولت اڄ جي سائنس ان قابل آهي تہ اها ڏورانھن سيارن ۽ ستارن جي ساخت بابت پُختي ڄاڻ مھيا ڪري سگهي. نيوٽن واري دور ۾ ٽيليسڪوپ جو ڍانچو وڏو ۽ ٻن وڏن لينسز تي مشتمل هوندو هيو جنھن سبب تصوير ڌنڌلي نظر ايندي هئي. نيوٽن پنھنجي روشني تي ڪيل تجربن جي آڌار تي پنھنجي لاءِ هڪ ننڍڙي ٽيليسڪوپ ٺاهي جنھن ۾ هن هڪ ننڍي لينس ۽ هڪ آئيني جو استعمال ڪيو. سندس ان ايجاد کيس برطانيا جي رائل سوسائٽي ۽ سڄي يورپ ۾ مشھور ڪري ڇڏيو، ڇاڪاڻ تہ تنھن وقت سامونڊي سفر لاءِ سٺي ٽيليسڪوپ جو هجڻ نھايت ئي ضروري هيو ۽ اهو ڪارنامو نيوٽن ڪري ڏيکاريو. رائل سوسائٽي جي طاقتور ماڻهو رابرٽ هُڪ سان تلخيء سبب نيوٽن رائل سوسائٽي کان پري ٿي ويو ۽ لاڳيتا ٻارهن سال پنهنجي گهر ۾ گذاريو جتي هن الڪيمي (Alchemy) ۾ مختلف تجربا شروع ڪيا. سندس مڃڻ هيو تہ ڪائنات ۾ هڪ اهڙي قوت ضرور آهي جيڪا هر ذري ۾ موجود آهي، جيڪا شين جي زندگي ۽ موت جو تعين ڪري ٿي، لوه کي سون ڪري ٿي ۽ پنهنجو پاڻ کي هر حال ۾ محفوظ رکي ٿي (نيوٽن تنھن دور ۾ انهي قانون جي ڀرسان اچي پهتو جيڪو 200 سال پوءِ آئنسٽائن دريافت ڪيو (E = mc2). بيشڪ سندس محنت جنھن شعبي 'الڪيمي' ۾ هئي اهو شعبو ڪا سائنس نہ هئي پر پراڻين ڏندڪٿائن تي مشتمل هڪ عقيدو هيو، تنھن جي باُوجود بہ نيوٽن ان عقيدي کي سائنسي اصولن موجب پروڙيو ۽ ان سان سچو رهيو. هڪ دفعي سندس هڪ دوست ايسٽرانامر ايڊمنڊ هيلي هن وٽ آيو ۽ هن کي همٿايائين تہ پنھنجون دريافتون ڪتابي شڪل ۾ ڇپرائي. نيوٽن ان ڳالھ تي راضي ٿيو ۽ 1687ع ۾ سندس ڪتاب "پرنسيپيا" (Principia) ڇپيو جنھن کي اڄ بہ سائنسي دنيا جو سڀ کان وڏو شاهڪار تصور ڪيو ٿو وڃي. سندس ڪتاب ۾ ڪيلڪيولس جي مدد سان سندس جڳ مشھور 3 حرڪت جا قانون (Laws of Motion)، ڪائناتي ڪشش ثقل جو قانون ۽ ٻيا کوڙ فطرتي مشاهدا بيان ڪيا ويا جيڪي اڄ جي جديد سائنس جو بُڻ بڻياد آهن. سندس دريافت ڪيل قانونن جي بدولت ئي صنعتي انقلاب ممڪن ٿي سگهيو. سائنس جي دنيا ۾ سندس عزت صرف دريافتن ۽ ايجادن جي ڪري نہ آهي پر ان سان گڏ سائنسي طريقيڪار ۾ نواڻ آڻڻ بہ تمام وڏي اهميت جوڳي ڳالھ آهي. نيوٽن پنهنجي طبعيت ۾ تمام اناپرست، لڪل، ساڙولو انسان هيو، جيڪو پنهنجي پاڻ کان سواءِ ڪنهن تي بہ يقين نہ ڪندو هيو. رائل سوسائٽي جو ڊائريڪٽر ٿيڻ شرط هن پنهنجي پراڻي دشمن رابرٽ هُڪ جي تصوير لاهي باه ۾ ساڙي ڇڏي. پنھنجي اٿاھ قابليتن جي ڪري انگلينڊ ۾ ڪيٿولڪ چرچ جي بالاداستيء هوندي بہ پروٽسٽنٽ نيوٽن کي انگلينڊ جي بادشاه پنهنجي ڪابينا ۾ جڳھ ڏني. نيوٽن هڪ سال لاءِ برطانوي پارليامينٽ جو حصو رهيو جتي سڄي سال ۾ هُن صرف هڪ جملو ڳالهائيندي ڀرسان ويٺل ميمبر کي چيو؛ "مهرباني ڪري دري بند ڪيو، ٻاهر ڏاڍو سيءُ آهي." نيوٽن جن ڪارنامن جي ڪري سڄي دنيا ۾ اڄ سڃاتو وڃي ٿو. اهي سڀ هن 26 سالن جي ننڍي عمر تائين سرانجام ڏنا. سندس سائنسي طريقيڪار ۽ منطق کي والٽيئر ۽ ايڊم سمٿ سماجي سائنس طور يورپ ۾ لاڳو ڪرڻ جي ڪوشش ڪئي ۽ خاطرخواھ ڪاميابي سان يورپ جي سوچ تي اثر انداز ٿيا. نيوٽن پنھنجو پاڻ کي ڄاڻ واري سمنڊ ڪناري بيٺل ٻار سان مشابھت ڏيندو هيو، جنھن جي تلاش هُئي خوبصورت پٿر ۽ سھڻيون سپيون. کانئس ڪنھن ماڻهو سوال ڪيو تہ توهان ايڏا هوشيار آهيو، ان جو بنيادي سبب ڇا آهي؟ سندس جواب هيو، "ڇاڪاڻ تہ مان پاڻ کان اڳ وارن ديوقامت عظيم انسانن جي ڪلهن تي چڙهي هن ڪائنات کي ڏسان پيو تنھنڪري ئي منھنجي نظر پري تائين آهي." هُن جو پُرتجسس دماغ سوال ڪرڻ جي بي انتھا قابليت رکندو هيو ۽ هُن جو ضمير هميشہ کيس سوالن جا جواب ڳولڻ لاءِ بيچين ۽ ٿرٿلي ۾ رکندو هيو ۽ انسان ذات جي فطرت متعلق پڪي ڄاڻ تي يقين نہ رکندو هيو جيسيتائين پاڻ ڪنھن نتيجي تي نہ پچچي. مشھور جرمن فلسفي فريڊرڪ نٽشي چواڻي، "سچ جو وڏو دشمن ڪُوڙ نہ پر پَڪ آهي." جيڪڏهن پنهنجي اڄ واري سماج تي نظر وجهجي تہ اندازو ٿيندو تہ اسان جو سماج, سماجي ۽ فطري سائنس جي ميدان ۾ 18هين صدي جي يورپ کان بہ پوئتي بيٺو آهي! ڏٺو وڃي تہ نيوٽن فطرت متعلق تمام عام ۽ بنيادي سوال ڪيا ڇو تہ هن پنهنجي وُجود کي پنهنجي آس پاس کان واقف رکڻ پئي چاهيو تنھنڪري هن پراسرار ڪائنات جي تلاءُ ۾ هڪ پٿر اڇلايو. لھرون تمام وڏيون ٿيون جو اڄ تائين اسان انهن جي دائري ۾ ئي جيئون پيا. اضافو:- اصغر ساگر مضمون:-شاھ جبار ==وڌيڪ ڏسو== {{Short description|English polymath (1642–1726)}} {{Good article}} {{Pp-move}} {{Pp-semi-indef}} {{Use British English|date=October 2024}} {{Infobox scientist | honorific_prefix = [[Sir]] | name = Isaac Newton | honorific_suffix = {{post-nominals|country=GBR|size=100%|FRS}} | image = Portrait of Sir Isaac Newton, 1689 (brightened).jpg | alt = Portrait of Newton, a white man with white hair and a brown robe, sitting with his hands folded | caption = [[Portrait of Isaac Newton|Portrait of Newton]], 1689 | birth_date = {{Birth date|df=y|1643|01|04}} | birth_place = {{nowrap|[[Woolsthorpe-by-Colsterworth]],}} Lincolnshire, England | death_date = {{Death date and age|df=y|1727|03|31|1643|01|04}} | death_place = [[Kensington]], Middlesex, England | resting_place = [[Westminster Abbey]] | fields = {{hlist|[[Physics]]|[[natural philosophy]]|[[alchemy]]|[[theology]]|[[mathematics]]|[[astronomy]]|[[economics]]}} | workplaces = {{hlist|[[University of Cambridge]]|[[Royal Society]]|[[Royal Mint]]}} | education = [[Trinity College, Cambridge]] ([[Bachelor of Arts|BA]], 1665; [[Master of Arts|MA]], 1668)<ref>Kevin C. Knox, Richard Noakes (eds.), ''From Newton to Hawking: A History of Cambridge University's Lucasian Professors of Mathematics'', Cambridge University Press, 2003, p. 61.</ref> | academic_advisors = {{unbulleted list | [[Isaac Barrow]]<ref>Feingold, Mordechai. [http://www.oxforddnb.com/view/article/1541 Barrow, Isaac (1630–1677)] {{Webarchive|url=https://web.archive.org/web/20130129154554/http://www.oxforddnb.com/view/article/1541 |date=29 January 2013 }}, ''Oxford Dictionary of National Biography'', [[Oxford University Press]], September 2004; online edn, May 2007. Retrieved 24 February 2009; explained further in {{cite journal |last=Feingold |first=Mordechai |date=1993 |title=Newton, Leibniz, and Barrow Too: An Attempt at a Reinterpretation |journal=Isis |volume=84 |issue=2 |pages=310–338 |bibcode=1993Isis...84..310F |doi=10.1086/356464 |jstor=236236 |s2cid=144019197 |issn=0021-1753}}</ref> | [[Benjamin Pulleyn]]<ref>{{cite web |title=Dictionary of Scientific Biography |url=http://www.chlt.org/sandbox/lhl/dsb/page.50.a.php |archive-url=https://web.archive.org/web/20050225223812/http://www.chlt.org/sandbox/lhl/dsb/page.50.a.php |archive-date=25 February 2005 |at=Notes, No. 4}}</ref>}} | notable_students = {{unbulleted list| [[Roger Cotes]]|[[William Whiston]]}} | awards = {{unbulleted list | [[Fellow of the Royal Society|FRS]]&nbsp;(1672)<ref name="frs">{{cite web |title=Fellows of the Royal Society |url=https://royalsociety.org/about-us/fellowship/fellows |archive-url=https://web.archive.org/web/20150316060617/https://royalsociety.org/about-us/fellowship/fellows |archive-date=16 March 2015 |publisher=Royal Society |location=London}}</ref> | [[Knight Bachelor]]&nbsp;(1705)}} | known_for = {{collapsible list|[[Classical mechanics|Newtonian mechanics]]| [[universal gravitation]]| [[calculus]]| [[Newton's laws of motion]]| [[optics]]| [[binomial series]]| ''[[Philosophiæ Naturalis Principia Mathematica|Principia]]''| [[Newton's method]] | [[Newton's law of cooling]]| [[Newton's identities]]| [[Newton's metal]]| [[Newton line]]| [[Newton–Gauss line]]| [[Newtonian fluid]]| [[Newton's rings]]|''[[Standing on the shoulders of giants]]'' |[[List of things named after Isaac Newton|List of all other works and concepts]]|}} | signature = Isaac Newton signature ws.svg | signature_alt = Signature written in ink in a flowing script | party = [[Whigs (British political party)|Whig]] | module = {{Infobox officeholder| embed = yes | office = [[Parliament of England|Member of Parliament]]<br />for [[Cambridge University (UK Parliament constituency)|the University of Cambridge]] | term_start = 1689 | term_end = 1690 | predecessor = [[Robert Brady (writer)|Robert Brady]] | successor = [[Edward Finch (composer)|Edward Finch]] | term_start1 = 1701 | term_end1 = 1702 | predecessor1 = [[Anthony Hammond (politician)|Anthony Hammond]] | successor1 = [[Arthur Annesley, 5th Earl of Anglesey]] | office2 = President of the Royal Society | order2 = 12th | term_start2 = 1703 | term_end2 = 1727 | predecessor2 = [[John Somers, 1st Baron Somers|John Somers]] | successor2 = [[Hans Sloane]] | office3 = [[Master of the Mint]] | term_start3 = 1699 | term_end3 = 1727 | predecessor3 = [[Thomas Neale]] | successor3 = [[John Conduitt]] | suboffice3 = [[Warden of the Mint]] | subterm3 = 1696–1699 | office4 = Lucasian Professor of Mathematics | order4 = 2nd | term_start4 = 1669 | term_end4 = 1702 | predecessor4 = [[Isaac Barrow]] | successor4 = [[William Whiston]] }} }} '''Sir Isaac Newton''' ({{OldStyleDate|4 January|1643|25 December}}{{snd}}{{OldStyleDate|31 March|1727|20 March}}) was 1643 نيوٽن (4 جنوري - 31 مارچ 1727) هڪ انگريزي پولي ميٿ ,هڪ رياضي دان، فزڪسسٽ، فلڪيات دان، ڪيميا دان، عالم ۽ ليکڪ جي حيثيت سان سرگرم هو. نيوٽن سائنسي انقلاب ۽ ان کان پوءِ روشن خيالي جي د (renaissance) ۾ هڪ اهم شخصيت هو. سندس ڪتاب Philosophiæ Naturalis Principia Mathematica (قدرتي فلسفي جا رياضي جا اصول)، پهريون ڀيرو 1687 ۾ شايع ٿيو. ان فزڪس ۾ پهريون عظيم اتحاد (متحد) حاصل ڪيو ۽ ڪلاسيڪل ميڪينڪس قائم ڪيو. نيوٽن آپٽڪس ۾ پڻ بنيادي ڪردار ادا ڪيو. ۽ جرمن رياضي دان گوٽفريڊ ولهيلم ليبنز سان گڏ لامحدود (تمام ننڍو، صفر جي ويجهو) ڪيلڪولس ٺاهڻ جو ڪريڊٽ شيئر ڪري ٿو. جيتوڻيڪ هن ليبنز کان سال اڳ ڪيلڪولس تيار ڪيو. نيوٽن سائنسي طريقو ۾ حصو ورتو ۽ ان کي بهتر بڻايو. ۽ سندس ڪم کي جديد سائنس کي اڳتي آڻڻ ۾ سڀ کان وڌيڪ اثرائتو سمجهيو ويندو آهي. <nowiki>*</nowiki> پرنسپيا ۾، نيوٽن حرڪت ۽ عالمگير ڪشش ثقل جا قانون ٺاهيا. جيڪو صدين تائين غالب سائنسي نقطه نظر قائم ڪيو. جيستائين ان کي نظريي جي اضافيت سان ختم نه ڪيو ويو. هن ڪيپلر جي گرهن جي حرڪت جي قانونن کي حاصل ڪرڻ لاءِ ڪشش ثقل جي پنهنجي رياضياتي وضاحت استعمال ڪئي. لهرن جو حساب. ڪاميٽ جي رفتار (رستي). مساوات ۽ ٻين رجحانن جي اڳڀرائي. شمسي نظام جي هيليو سينٽريٽي (سج کي نظام جي مرڪز طور) بابت شڪ کي ختم ڪرڻ. نيوٽن ٻن جسمن جي مسئلي کي حل ڪيو. ۽ ٽن جسمن جي مسئلي کي متعارف ڪرايو. هن اهو ظاهر ڪيو ته زمين ۽ آسماني جسمن تي شين جي حرڪت ساڳئي اصولن سان حساب ڪري سگهجي ٿي. an English [[polymath]] active as a [[mathematician]], [[physicist]], [[astronomer]], [[alchemist]], [[theologian]], and author.<ref name=":1">{{Cite web |last=Alex |first=Berezow |date=4 February 2022 |title=Who was the smartest person in the world? |url=https://bigthink.com/the-past/smartest-person-world-isaac-newton/ |access-date=28 September 2023 |website=Big Think |archive-date=28 September 2023 |archive-url=https://web.archive.org/web/20230928161012/https://bigthink.com/the-past/smartest-person-world-isaac-newton/ |url-status=live }}</ref> Newton was a key figure in the [[Scientific Revolution]] and the [[Age of Enlightenment|Enlightenment]] that followed.<ref name=":9">{{Cite book |last=Matthews |first=Michael R. |author-link=Michael R. Matthews |url=https://books.google.com/books?id=JrcqBgAAQBAJ&pg=PA181 |title=Time for Science Education: How Teaching the History and Philosophy of Pendulum Motion Can Contribute to Science Literacy |date=2000 |publisher=Springer Science+Business Media, LLC |isbn=978-0-306-45880-4 |series= |location=New York |pages=181 |language=en}}</ref> His book {{lang|la|[[Philosophiæ Naturalis Principia Mathematica]]}} (''Mathematical Principles of Natural Philosophy''), first published in 1687, [[Unification of theories in physics#Unification of gravity and astronomy|achieved the first great unification in physics]] and established [[classical mechanics]].<ref name=":32">{{cite journal |last=Rynasiewicz |first=Robert A. |title=Newton's Views on Space, Time, and Motion |date=22 August 2011 |journal=[[Stanford Encyclopedia of Philosophy]] |pages= |url=https://plato.stanford.edu/entries/newton-stm/ |access-date=15 November 2024 |publisher=Stanford University |author-link=Robert Rynasiewicz}}</ref><ref name=":15">{{cite book |author=Klaus Mainzer |url=https://books.google.com/books?id=QekhAAAAQBAJ&pg=PA8 |title=Symmetries of Nature: A Handbook for Philosophy of Nature and Science |date=2 December 2013 |publisher=Walter de Gruyter |isbn=978-3-11-088693-1 |page=8 }}</ref> Newton also made seminal contributions to [[optics]], and [[Leibniz–Newton calculus controversy|shares credit]] with German mathematician [[Gottfried Wilhelm Leibniz]] for formulating [[calculus|infinitesimal calculus]], though he developed calculus years before Leibniz. Newton contributed to and refined the [[scientific method]], and his work is considered the most influential in bringing forth modern science. In the {{lang|la|Principia}}, Newton formulated the [[Newton's laws of motion|laws of motion]] and [[Newton's law of universal gravitation|universal gravitation]] that formed the dominant scientific viewpoint for centuries until it was superseded by the [[theory of relativity]]. He used his mathematical description of [[gravity]] to derive [[Kepler's laws of planetary motion]], account for [[tide]]s, the [[Trajectory|trajectories]] of [[comet]]s, the [[Axial precession|precession of the equinoxes]] and other phenomena, eradicating doubt about the [[Solar System]]'s [[heliocentrism|heliocentricity]].<ref>{{Cite book |last=More |first=Louis Trenchard |url=https://archive.org/details/isaacnewtonbiogr0000loui/page/327 |title=Isaac Newton: A Biography |publisher=Dover Publications |year=1934 |page=327}}</ref> Newton solved the [[two-body problem]], and introduced the [[three-body problem]]. He demonstrated that the [[Dynamics (mechanics)|motion of objects]] on Earth and [[Astronomical object|celestial bodies]] could be accounted for by the same principles. Newton's inference that the Earth is an [[Spheroid#Oblate spheroids|oblate spheroid]] was later confirmed by the geodetic measurements of [[Alexis Clairaut]], [[Charles Marie de La Condamine]], and others, convincing most European scientists of the superiority of Newtonian mechanics over earlier systems. He was also the first to calculate the [[age of Earth]] by experiment, and described a precursor to the modern [[wind tunnel]]. Newton built the [[Newtonian telescope|first reflecting telescope]] and developed a sophisticated [[Color theory|theory of colour]] based on the observation that a [[Dispersive prism|prism]] separates [[Electromagnetic spectrum#Visible radiation (light)|white light]] into the colours of the [[visible spectrum]]. His work on light was collected in his book ''[[Opticks]]'', published in 1704. He originated prisms as [[Beam expander|beam expanders]] and [[Multiple-prism dispersion theory|multiple-prism arrays]], which would later become integral to the development of [[Tunable laser|tunable lasers]]. He also anticipated [[wave–particle duality]] and was the first to theorize the [[Goos–Hänchen effect]]. He further formulated an [[Newton's law of cooling|empirical law of cooling]], which was the first heat transfer formulation and serves as the formal basis of [[Convection (heat transfer)|convective heat transfer]],<ref name=":13">{{Cite journal |last1=Cheng |first1=K. C. |last2=Fujii |first2=T. |date=1998 |title=Isaac Newton and Heat Transfer |url=http://www.tandfonline.com/doi/abs/10.1080/01457639808939932 |journal=Heat Transfer Engineering |volume=19 |issue=4 |pages=9–21 |doi=10.1080/01457639808939932 |issn=0145-7632|url-access=subscription }}</ref> made the first theoretical calculation of the [[speed of sound]], and introduced the notions of a [[Newtonian fluid]] and a [[black body]]. He was also the first to explain the [[Magnus effect]]. Furthermore, he made early studies into [[electricity]]. In addition to his creation of calculus, Newton's work on mathematics was extensive. He generalized the [[binomial theorem]] to any real number, introduced the [[Puiseux series]], was the first to state [[Bézout's theorem]], classified most of the [[Cubic plane curve|cubic plane curves]], contributed to the study of [[Cremona transformation|Cremona transformations]], developed [[Newton's method|a method]] for approximating the [[Zero of a function|roots of a function]], and also originated the [[Newton–Cotes formulas]] for [[numerical integration]]. He further initiated the field of [[calculus of variations]], devised an early form of [[regression analysis]], and was a pioneer of [[vector calculus|vector analysis]]. Newton was a fellow of [[Trinity College, Cambridge|Trinity College]] and the second [[Lucasian Professor of Mathematics]] at the [[University of Cambridge]]; he was appointed at the age of 26. He was a devout but unorthodox Christian who privately rejected the doctrine of the [[Trinity]]. He refused to take [[holy orders]] in the [[Church of England]], unlike most members of the Cambridge faculty of the day. Beyond his work on the [[mathematical sciences]], Newton dedicated much of his time to the study of [[alchemy]] and [[Chronology of the Bible|biblical chronology]], but most of his work in those areas remained unpublished until long after his death. Politically and personally tied to the [[Whigs (British political party)|Whig party]], Newton served two brief terms as [[Cambridge University (UK Parliament constituency)|Member of Parliament for the University of Cambridge]], in 1689–1690 and 1701–1702. He was [[knight]]ed by [[Anne, Queen of Great Britain|Queen Anne]] in 1705 and spent the last three decades of his life in London, serving as [[Warden of the Mint|Warden]] (1696–1699) and [[Master of the Mint|Master]] (1699–1727) of the [[Royal Mint]], in which he increased the accuracy and security of British coinage, as well as the president of the [[Royal Society]] (1703–1727). ==ٻاهريان ڳنڍڻا== {{Sister project links|s=Author:Isaac Newton|wikt=no|n=no|b=Introduction to Astrophysics/Historical Context/Isaac Newton}} * * [http://scienceworld.wolfram.com/biography/Newton.html ScienceWorld biography] by [[Eric Weisstein]] * [http://www.chlt.org/sandbox/lhl/dsb/page.50.a.php Dictionary of Scientific Biography] * [http://www.newtonproject.sussex.ac.uk/prism.php?id=1 "The Newton Project"] * [http://www.isaacnewton.ca/ "The Newton Project – Canada"] * [http://www.pbs.org/wgbh/nova/newton/ "Newton's Dark Secrets"] – [[Nova (TV series)|NOVA]] TV programme * from ''The [[Stanford Encyclopedia of Philosophy]]:'' ** [http://plato.stanford.edu/entries/newton/ "Isaac Newton"], by George Smith ** [http://plato.stanford.edu/entries/newton-principia/ "Newton's ''Philosophiae Naturalis Principia Mathematica''"], by George Smith ** [http://plato.stanford.edu/entries/newton-philosophy/ "Newton's Philosophy"], by Andrew Janiak ** [http://plato.stanford.edu/entries/newton-stm/ "Newton's views on space, time, and motion"], by Robert Rynasiewicz * [http://www.tqnyc.org/NYC051308/index.htm "Newton's Castle"] – educational material * [http://www.dlib.indiana.edu/collections/newton "The Chymistry of Isaac Newton"], research on his alchemical writings * [http://hss.fullerton.edu/philosophy/GeneralScholium.htm The "General Scholium" to Newton's ''Principia''] {{Webarchive|url=https://archive.is/20030513080422/http://hss.fullerton.edu/philosophy/GeneralScholium.htm |date=2003-05-13 }} * Kandaswamy, Anand M. [http://www.math.rutgers.edu/courses/436/Honors02/newton.html "''The Newton/Leibniz Conflict in Context''"] * [http://www.phaser.com/modules/historic/newton/index.html Newton's First ODE] {{Webarchive|url=https://web.archive.org/web/20070705191603/http://www.phaser.com/modules/historic/newton/index.html |date=2007-07-05 }}&nbsp;– A study by on how Newton approximated the solutions of a first-order ODE using infinite series * [http://www.ltrc.mcmaster.ca/newton/ "The Mind of Isaac Newton"] {{Webarchive|url=https://web.archive.org/web/20061213222519/http://www.ltrc.mcmaster.ca/newton/ |date=2006-12-13 }} – images, audio, animations and interactive segments * [http://www.enlighteningscience.sussex.ac.uk/home Enlightening Science] Videos on Newton's biography, optics, physics, reception, and on his views on science and religion * [http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Newton.html Newton biography (University of St Andrews)] * {{cite EB1911|wstitle=Newton, Sir Isaac}} --> Chisholm, Hugh, ed. (1911). "[[s:1911 Encyclopædia Britannica/Newton, Sir Isaac|Newton, Sir Isaac]]". ''[[Encyclopædia Britannica]]'' (11th ed.). Cambridge University Press. * The [[Linda Hall Library]] has digitized [http://lhldigital.lindahall.org/cdm/search/searchterm/Canon%20Chronicus%20Aegyptiacus/field/title/mode/exact/conn/and/order/nosort Two copies of John Marsham's (1676) ''Canon Chronicus Aegyptiacus''] {{Webarchive|url=https://web.archive.org/web/20200920090207/http://lhldigital.lindahall.org/cdm/search/searchterm/Canon%20Chronicus%20Aegyptiacus/field/title/mode/exact/conn/and/order/nosort |date=2020-09-20 }}, one of which was [http://lhldigital.lindahall.org/cdm/ref/collection/philsci/id/139 owned by Isaac Newton] {{Webarchive|url=https://web.archive.org/web/20201013060423/http://lhldigital.lindahall.org/cdm/ref/collection/philsci/id/139 |date=2020-10-13 }}, who marked salient passages by dog-earing the pages so that the corners acted as arrows. The books can be compared side-by-side to show what interested Newton. '''نيوٽن جون لکڻيون''' * [http://www.newtonproject.sussex.ac.uk/prism.php?id=43 Newton's works – full texts, at the Newton Project] * [http://web.nli.org.il/sites/NLI/English/collections/Humanities/Pages/newton.aspx The Newton Manuscripts at the National Library of Israel – the collection of all his religious writings] * [http://rack1.ul.cs.cmu.edu/is/newton/ "Newton's ''Principia''"] {{Webarchive|url=https://web.archive.org/web/20090810003302/http://rack1.ul.cs.cmu.edu/is/newton/ |date=2009-08-10 }} – read and search * [http://www.earlymoderntexts.com/ ''Descartes, Space, and Body'' and ''A New Theory of Light and Colour''], modernised readable versions by Jonathan Bennett * [https://archive.org/stream/opticksoratreat00newtgoog#page/n6/mode/2up ''Opticks, or a Treatise of the Reflections, Refractions, Inflexions and Colours of Light''], full text on [[archive.org]] * [http://cudl.lib.cam.ac.uk/collections/newton "Newton Papers"] – Cambridge Digital Library * (1686) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/15635 "A letter of Mr. Isaac Newton... containing his new theory about light and colors"] {{Webarchive|url=https://web.archive.org/web/20201009103331/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/15635 |date=2020-10-09 }}, ''Philosophical Transactions of the Royal Society'', Vol. XVI, No. 179, pp.&nbsp;3057–3087. – digital facsimile at the [[Linda Hall Library]] * (1704) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/3080 ''Opticks''] {{Webarchive|url=https://web.archive.org/web/20201016062120/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/3080 |date=2020-10-16 }} – digital facsimile at the [[Linda Hall Library]] * (1719) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/33634 ''Optice''] {{Webarchive|url=https://web.archive.org/web/20200908133047/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/33634 |date=2020-09-08 }} – digital facsimile at the [[Linda Hall Library]] * (1729) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/35921 ''Lectiones opticae''] {{Webarchive|url=https://web.archive.org/web/20201027014312/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/35921 |date=2020-10-27 }} – digital facsimile at the [[Linda Hall Library]] * (1749) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/35293 ''Optices libri tres''] {{Webarchive|url=https://web.archive.org/web/20200916232516/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/35293 |date=2020-09-16 }} – digital facsimile at the [[Linda Hall Library]] {{navboxes |title=Related navigational templates |list= {{flatlist| * [[Template:Lucasian Professors of Mathematics|Lucasian Professors of Mathematics]] (over 20 topics) * [[Template:Royal Society presidents 1700s|Royal Society presidents 1700s]] (over 15 topics) * [[Template:Age of Enlightenment|Age of Enlightenment]] (over 60 topics) * [[Template:Metaphysics|Metaphysics]] (over 130 topics) * [[Template:Philosophy of science|Philosophy of science]] (over 130 topics) * [[Template:Scientists whose names are used as SI units|Scientists whose names are used as SI units]] (over 20 topics) }}}} {{Authority control}} {{DEFAULTSORT:Newton, Isaac}} ==حوالا== {{حوالا}} [[زمرو:سائنسدان]] [[زمرو:طبیعیات دان]] [[زمرو:آئزڪ نيوٽن]] [[زمرو:ڪلاسيڪل فزڪس]] [[زمرو:نظرياتي سائنسدان]] [[زمرو:سائنسدان جي فهرست]] [[زمرو:طبيعيات دان جي فهرست]] [[زمرو:1642ع جون پيدائشون]] [[زمرو:1727ع جون وفاتون]] [[زمرو:17th-century English mathematicians]] [[زمرو:17th-century English writers]] [[زمرو:17th-century Latin-language writers]] [[زمرو:18th-century English mathematicians]] [[زمرو:18th-century English writers]] [[زمرو:18th-century Latin-language writers]] [[زمرو:Alumni of Trinity College, Cambridge]] [[زمرو:Antitrinitarians]] [[زمرو:Apocalypticists]] [[زمرو:Ballistics experts]] [[زمرو:Burials at Westminster Abbey]] [[زمرو:Color scientists]] [[زمرو:Copernican Revolution]] [[زمرو:English alchemists]] [[زمرو:English Anglicans]] [[زمرو:English astronomers]] [[زمرو:English inventors]] [[زمرو:English mathematicians]] [[زمرو:English MPs 1689–90]] [[زمرو:English MPs 1701–02]] [[زمرو:English physicists]] [[زمرو:Enlightenment scientists]] [[زمرو:Experimental physicists]] [[زمرو:Fellows of the Royal Society]] [[زمرو:Fellows of Trinity College, Cambridge]] [[زمرو:Hermeticists]] [[زمرو:History of calculus]] [[زمرو:Knights Bachelor]] [[زمرو:Lucasian Professors of Mathematics]] [[زمرو:Masters of the Mint]] [[زمرو:Members of the Parliament of the United Kingdom for university constituencies]] [[زمرو:Members of the pre-1707 Parliament of England for the University of Cambridge]] [[زمرو:Natural philosophers]] [[زمرو:Optical physicists]] [[زمرو:People educated at The King's School, Grantham]] [[زمرو:People from South Kesteven (district)]] [[زمرو:Philosophers of science]] [[زمرو:Post-Reformation Arian Christians]] [[زمرو:Presidents of the Royal Society]] [[زمرو:Scientific instrument makers]] [[زمرو:Theoretical physicists]] [[زمرو:Geometers]] [[زمرو:18th-century British scientists]] 3jhy8bhk3kw0sqpl8yt9km4mzwi5n7o 322508 322507 2025-07-10T16:05:36Z Abdullah1601 18012 322508 wikitext text/x-wiki {{Infobox person | honorific_prefix = سر | name = آئزڪ نيوٽن | honorific_suffix = {{post-nominals|country=GBR|size=100|PRS}} | image = GodfreyKneller-IsaacNewton-1689.jpg | alt = Portrait of man in black with shoulder-length, wavy brown hair, a large sharp nose, and a distracted gaze | caption = نيوٽن جو پورٽريٽ - گاڊفري ميلر | birth_date = 25 ڊسمبر، 1642 | birth_place = وولسٿورپ (ھڪ ڳوٺ )، لنڪاشاير ڪائونٽي، ڪنگڊم آف انگلينڊ | death_date = 20 مارچ، 1727 | death_place = ڪينسنگٽن، مڊل سيڪس، [[انگلينڊ]] | resting_place = ويسٽ منسٽر ايبي | nationality = انگلش | fields = * [[فزڪس]] * [[نيچرل فلاسافي]] * [[الڪيمي]] * [[ميٿميٽڪس]] * [[فلڪيات]] * [[معاشيات]] | workplaces = * [[ڪيمبرج يونيورسٽي]] * [[رايل سوسائٽي]] * رايل منٽ | alma_mater = ٽرنٽي ڪالج، [[ڪيمبرج]] | academic_advisors = {{unbulleted list | [[Isaac Barrow]]<ref>Feingold, Mordechai. [http://www.oxforddnb.com/view/article/1541 Barrow, Isaac (1630–1677)], ''Oxford Dictionary of National Biography'', [[Oxford University Press]], September 2004; online edn, May 2007; retrieved 24 February 2009; explained further in Mordechai Feingold's "[https://www.jstor.org/stable/236236 Newton, Leibniz, and Barrow Too: An Attempt at a Reinterpretation]" in ''Isis'', Vol. 84, No. 2 (June 1993), pp. 310–38.</ref> | [[Benjamin Pulleyn]]<ref>[http://www.chlt.org/sandbox/lhl/dsb/page.50.a.php Newton profile], ''Dictionary of Scientific Biography'', n.4.</ref><ref name="The Newton Handbook">{{harvnb|Gjertsen|1986|page={{page needed|date=August 2014}}}}</ref>}} | notable_students = روجر ڪوٽس * وليم وچسٽن | awards = فيلو آف رايل سوسائٽي (1672)<ref name=frs>{{cite web|archiveurl=https://web.archive.org/web/20150316060617/https://royalsociety.org/about-us/fellowship/fellows|archivedate=16 March 2015|url=https://royalsociety.org/about-us/fellowship/fellows|publisher=Royal Society|location=London|title=Fellows of the Royal Society}}</ref> <br> نائٽ بيچلر (1702) | known_for = * [[ميڪانيات|نيوٽن جي ميڪانيات]] * [[ڪشش ثقل|ڪائنات جي ڪشش ثقل]] * [[ڪيلڪولس]] * [[حرڪت جا قانون| نيوٽن جا حرڪت جا قانون]] * علم مناظر * بائنوميل سيريز * ''فلاسافي آف نيچرل پرنسپلز '' * نيوٽن جو ميٿڊ | signature = Isaac Newton signature ws.svg | signature_alt = Is. Newton }} '''آئزڪ نيوٽن''' (Isaac Newton) [[فزڪس|طبیعیات]] جو وڏو ماهر هو. هن حرڪت ۽ ڪشش ثقل سميت ڪيترن ئي معاملن جي نه رڳو وضاحت ڪئي پر ان کي تجربن وسيلي ثابت به ڪيو ۽ ان جا قانون به جوڙيا. هن ڪهڪشائن ۽ ستارن جي رازن تان پردو به کنيو. کيس سندس انهن ئي خدمتن عيوض اهو مقام مليو.<ref name="سنڌيانا">[http://books.sindhsalamat.com/book.php?book_id=312 ''تخليق خالق کانسواءِ، ليکڪ عمر عطيلا ايرگي، سنڌيڪار مظفر بخاري''] {{Webarchive|url=https://web.archive.org/web/20170912095824/http://books.sindhsalamat.com/book.php?book_id=312 |date=2017-09-12 }} ''سنڌ سلامت ڪتاب گھر</ref> آئزڪ نيوٽن سال 1642ع ۾ انگلينڊ ۾ ڄائو هو. اهو ساڳيو ئي سال هو، جڏهن گئليلو لاڏاڻو ڪيو هو. نيوٽن کي تمام گهڻي مڃتا به ملي ۽ گئليلو وانگر سندس چهري تي افسوس جو ڪوبه نشان موجود نه هو. برنارڊ رسل چوي ٿو “نيوٽن کان پوءِ رڳو البرٽ آئنسٽائين ئي آهي جنهن جي ڪم ۾ نيوٽن جهڙي خوبصورتي جا پاڇولا نظر اچن ٿا.<ref name="سنڌيانا"/> نيوٽن پنهنجي لئباريٽريءَ ۾ سج منڊل (Solar System) جو هڪ ميڪنيڪل ماڊل (Mechanical Model) تيار ڪيو. اهو ماڊل هڪ ليور کي حرڪت ڏيڻ سان متحرڪ ٿي ويندو هو ۽ سمورا گرهه سج جي چوڌاري گردش ڪرڻ لڳندا هئا. ھن جي ماء جو نالو ھانا ايسڪف (Hannah Ayscough) ھو. ھي پنھنجي والد جي وفات کان پوءِ پيدا ٿيو. ھن جي پيء جو نالو آئزڪ نيوٽن ھو ۽ ساڳيو نالو ھن تي رکيو ويو.<ref>{{cite journal|last1=Storr|first1=Anthony|title=Isaac Newton|journal=British Medical Journal (Clinical Research Edition)|date=December 1985|volume=291|issue=6511|page=1779|jstor=29521701|publisher=BMJ|doi=10.1136/bmj.291.6511.1779}}</ref> جڏھن ٽن سالن جو ھو تہ ھن جي ماء ٻي شادي ڪري نئين مڙس سان رھڻ شروع ڪيو ۽ نيوٽن پنھنجي نانيء جي حوالي ٿيو. ٻي شادي ڪرڻ جي ڪري ھي ماء کي پسند نہ ڪندو ھو نہ ئي وري ھن جي ويڳي پيءُ سان انسيت ٿي سگھي.<ref>{{cite journal|last1=Keynes|first1=Milo|title=Balancing Newton's Mind: His Singular Behaviour and His Madness of 1692–93|journal=Notes and Records of the Royal Society of London|date=20 September 2008|volume=62|issue=3|page=293|jstor=20462679|doi=10.1098/rsnr.2007.0025}}</ref> سندس ماءُ کي ٻئي مڙس مان ٽي ٻار ٿيا.{{sfn|Westfall|1980|p=55}} ننڍپڻ ۾ ڏاڍو ذھين ٻار ھيو پر اسڪول ۾ ھن کي دلچسپي ڪانہ ھئي. سال 1659ع ۾ جڏھن نوجوان ھو تہ ھن جي ماء کيس اسڪول مان اھو سوچي ڪڍرائي ڇڏيو تہ شايد ھڪ سٺو ھاري بڻجي سگھي پر پوء ڏٺائين تہ ھن جي دلچسپي جا سامان ڪجهه ٻيا آھن. ارڙھن سالن جي عمر ۾ ڪيمبرج يونيورسٽي ۾ داخل ٿيو جتي ھن سائنس ۽ رياضي ۾ پاڻ کي وقف ڪري ڇڏيو، ۽ جلد ئي پاڻ چڱي ڀلي تحقيق جي قابل ٿي ويو. 25 کان 27 سالن جي عمر ۾ ھن سائنس جي بنيادن کي لوڏائي ڇڏيو.<ref>{کتاب:سو عظیم آدمی؛ مصنف: مائیکل ھارٹ؛ پیج 31؛ تخلیقات پبلیشرز لاہور}</ref> ھي پنھنجي تحقيق ۾ بنيادي نظرين کي 1669ع تائين واضح ڪري چُڪو هو پر ان جا ڪافي نظريا بعد ۾ منظر عام تي آيا. ھن جا شروع وارا نظريا روشني جي باري ۾ ھئا. ھن تجربن ذريعي ثابت ڪيو تہ روشني انڊلٺي رنگن جو مڪسچر آھي.<ref>{کتاب:سو عظیم آدمی؛ مصنف: مائیکل ھارٹ؛ پیج 31؛ تخلیقات پبلیشرز لاہور}</ref> ماڻهو فطرت جو اهو حصو آهي جنهن جي ذريعي فطرت پنهنجو پاڻ سوچي ٿي. بيشڪ سوچ ۽ سمجھ وسيلي ئي ڪنھن بہ شيء کي تبديل ڪري سگهجي ٿو. انهي سوچ جي پُرتجسس سفر ۾ ڪجهه انسان اهڙا بہ شامل آهن جن جي بدولت سموري انسان ذات هڪ دور کان ڇلانگ ڏئي ٻئي دور ۾ بہ داخل ٿي آهي. آئزڪ نيوٽن بہ انهن ئي چند عظيم دماغن مان هڪ آهي جن سموري انسان ذات جي فطرت متعلق سوچ جي ڪاياپلٽ ڪئي. نيوٽن جو تعلق جنھن دور سان آهي ان کي روشن خياليءَ وارو زمانو سڏيو ويندو آهي ۽ واقعي بہ ڏٺو وڃي تہ نيوٽن پنھنجي ڪارنامن جي ڪري انهي روشن خيالي جو آسمان رهيو آهي. جنھن سال ۾ سائنس جي بزرگ گيلیليو جو موت ٿيو اُن ئي سال ۾ ڪرسمس واري ڏينهن تي نيوٽن جو جنم انگلينڊ جي هڪ ننڍڙي ڳوٺ وولس ٿورپ ۾ ستڙيي (وقت کان اڳ ڄاول) ڪمزور ٻار طور ٿيو جنهن جي باري ۾ خيال ڪيو ويو تہ شايد بچي نہ سگهي. انگلينڊ ۾ 1640ع وارو ڏهاڪو تمام خطرناڪ گهرو ويڙھ ۽ پليگ جھڙي موتمار بيماري جو رهيو. ڪافي ماڻهن جو خيال هيو تہ بس هاڻي قيامت ويجهي آهي ۽ انسان ذات جو خاتمو ٿي ويندو. سندس جنم کان 3 مھينا پھريان سندس والد (جنھن جو نالو بہ آئزڪ نيوٽن هيو) جو انتقال ٿي ويو، تنھنڪري سندس ماءُ ڪجهه سالن کانپوءِ ٻي شادي ڪري ڇڏي، جنھن جا نيوٽن جي زندگي تي تمام گھرا اثر رهيا مثال طور اڪيلائپ، پيءُ جي پيار کان محرومي وغيره. شروعاتي تعليم ڪنگز ڪاليج مان پرائڻ بعد سندس ماءُ غربت سبب کيس واپس پنهنجي ڳوٺ مال جو واڙو سنڀالڻ لاءِ گهرائي ورتو. سندس پُرتجسس دماغ جو اندازو سندس ٻاروتڻ وارين حرڪتن مان لڳائي سگهجي ٿو، مثال طور هڪ دفعي طوفان تمام تيز هيو ۽ ميڊم هانا (نيوٽن جي ماءُ) مال جي وٿاڻ بابت شديد پريشاني ۾ سوچي رهي هئي تہ الائي وٿاڻ جا در ۽ دريون هوا ۾ ڀڄي نہ پيا هجن. انهي پريشاني کي حل ڪرڻ لاءِ ميڊم، نيوٽن کي وٿاڻ طرف موڪليو تہ جيئن هو پرگهور لھي اچي. ڪافي دير گذرڻ باوجود بہ جڏهن نيوٽن واپس نہ آيو تہ ميڊم پاڻ وڃي وٿاڻ پهتي. ننڍڙو وٿاڻ جا در ۽ دريون چڪاسڻ بجاءِ، ٻاهر ٺھيل ڪاٺ جي چبوترن مٿان ٽپ ڏئي تيز هوا جو پريشر چيڪ ڪرڻ ۾ مصروف هيو! ننڍي لاءِ نيوٽن وقت ڏسڻ لاءِ پنھنجي ڪمري جي ڀت تي هڪ شمسي گهڙيال ۽ هوا تي هلندڙ چڪي ٺاهي. سندس ماءُ کي جنهن مھل پڪ ٿي وئي تہ نيوٽن سندس مال وارو واڙو نہ سنڀالي سگهندو تہ هُن کيس ڪئمبريج يونيورسٽي جي ٽرنٽي ڪاليج ۾ وڌيڪ تعليم حاصل ڪرڻ لاءِ موڪلي ڇڏيو. غربت سبب پھريان ڪجهه سال نيوٽن ڪاليج جي هاسٽل تي ٻين شاگردن جي ڪمرن جي صفائي سٿرائي وارو ڪم ڪري ڪجهه پئسا ڪمائيندو هيو، جيسيتائين کيس اسڪالرشپ ملي. سندس پڙهائي واري دور ۾ فطرت متعلق ارسطو جا ٻہ هزار سال پراڻا نظريا پڙهايا ويندا هيا ڇاڪاڻ تہ اهي ڪليسائيت جي لاءِ گهڻا نقصانڪار نہ هيا مثال طور ارسطو موجب ڪو بال يا هنداڻو هوا ۾ اڇلائڻ کان پوءِ واپس ڌرتي تي ان ڪري ٿو ڪري ڇاڪاڻ تہ هنداڻي يا بال ۾ هيٺ ڪرڻ جي صلاحيت (ڪشش) موجود آهي. دونھون يا ٻاڦ ۽ ڪڪر آسمان طرف ان ڪري ٿا وڃن ڇاڪاڻ تہ انهن ۾ مٿي وڃڻ جي صلاحيت (ليوٽي) موجود آهي. نيوٽن ان قسم جي نصاب مان مطمئن نہ هيو تنھنڪري هن پنهنجي لاءِ سوالن جي الڳ فھرست تيار ڪئي جنھن کي هُو 'پُختا فلسفياڻا سوال' چوندو هيو، جن ۾ ڪشش، روشني، حرارت، حرڪت، مقناطيسيت، سيارن ۽ ستارن متعلق 45 اهم سوال شامل هيا. نيوٽن جو چوڻ هيو تہ هڪ صحيح سوال ڪنھن بہ مسئلي جو اڌ جواب هوندو آهي. سندس انهي تجسس کيس گيلیليو، ديڪارت، ڪوپرنيڪس ۽ ڪيپلر کي پڙهڻ ۽ انهن جي سوالن ۽ نتيجن تي پنھنجا سوال اٿارڻ لاءِ مجبور ڪيو. نيوٽن کان اڳ وارا سائنسدان گرهن جي گردش متعلق ڪافي ڳالهيون ٻڌائي ويا هيا پر انهن ۾ بنيادي سوالن جا جواب شامل نہ هيا مثال طور گرھ سج جي چوڌاري چڪر ڪيئن ٿا لڳائن ۽ ڇو ٿا لڳائن؟ اها ڪھڙي قوت آهي جيڪا خلائي جسمن کي مٿي خلا ۾ ئي رکيو ويٺي آهي؟ وغيره. تنھن دور ۾ يورپ ۾ ڪليسا جي بالادستي سبب نيوٽن اهو چئي اڳتي وڌيو تہ خُدا هي ڪائنات ٺاهي آھي، اچو تہ پاڻ ان جا قانون ڳوليون. نيوٽن انهن سوالن جا جواب ڳولڻ جي ڪوشش شروع ڪئي تہ کيس تنھن دور جي رائج رياضيء جون کوٽون نظر آيون، جنھن سبب ڪا خاطر خواه پيش رفت ممڪن نہ هئي. ان ڏس ۾ هُن 'ڪيلڪيولس' ايجاد ڪيو ۽ ان جديد رياضياتي ايجاد جي بدولت شمسي نظام ۾ موجود گرهن جي مدار ۽ محور کي دريافت ڪيو ۽ اهو واضح ڪرڻ ۾ ڪامياب ويو تہ اها ڪائناتي ڪشش ثقل آهي جيڪا خلائي جسمن کي پنهنجن پنهنجن مدارن ۾ رکيو ويٺي آهي. نيوٽن واري زماني تائين اهو سمجهيو ويندو هيو تہ اڇو رنگ پاڪ، نج ۽ خُدا جي نشاني آهي. نيوٽن ان ڏس ۾ روشني تي تجربا ڪيا ۽ اهو ثابت ڪيو تہ اڇو رنگ نج ناهي پر مختلف رنگن جو ميلاپ آهي. سندس مشهور زمانہ اسپيڪٽرم تجربي بدولت اڄ جي سائنس ان قابل آهي تہ اها ڏورانھن سيارن ۽ ستارن جي ساخت بابت پُختي ڄاڻ مھيا ڪري سگهي. نيوٽن واري دور ۾ ٽيليسڪوپ جو ڍانچو وڏو ۽ ٻن وڏن لينسز تي مشتمل هوندو هيو جنھن سبب تصوير ڌنڌلي نظر ايندي هئي. نيوٽن پنھنجي روشني تي ڪيل تجربن جي آڌار تي پنھنجي لاءِ هڪ ننڍڙي ٽيليسڪوپ ٺاهي جنھن ۾ هن هڪ ننڍي لينس ۽ هڪ آئيني جو استعمال ڪيو. سندس ان ايجاد کيس برطانيا جي رائل سوسائٽي ۽ سڄي يورپ ۾ مشھور ڪري ڇڏيو، ڇاڪاڻ تہ تنھن وقت سامونڊي سفر لاءِ سٺي ٽيليسڪوپ جو هجڻ نھايت ئي ضروري هيو ۽ اهو ڪارنامو نيوٽن ڪري ڏيکاريو. رائل سوسائٽي جي طاقتور ماڻهو رابرٽ هُڪ سان تلخيء سبب نيوٽن رائل سوسائٽي کان پري ٿي ويو ۽ لاڳيتا ٻارهن سال پنهنجي گهر ۾ گذاريو جتي هن الڪيمي (Alchemy) ۾ مختلف تجربا شروع ڪيا. سندس مڃڻ هيو تہ ڪائنات ۾ هڪ اهڙي قوت ضرور آهي جيڪا هر ذري ۾ موجود آهي، جيڪا شين جي زندگي ۽ موت جو تعين ڪري ٿي، لوه کي سون ڪري ٿي ۽ پنهنجو پاڻ کي هر حال ۾ محفوظ رکي ٿي (نيوٽن تنھن دور ۾ انهي قانون جي ڀرسان اچي پهتو جيڪو 200 سال پوءِ آئنسٽائن دريافت ڪيو (E = mc2). بيشڪ سندس محنت جنھن شعبي 'الڪيمي' ۾ هئي اهو شعبو ڪا سائنس نہ هئي پر پراڻين ڏندڪٿائن تي مشتمل هڪ عقيدو هيو، تنھن جي باُوجود بہ نيوٽن ان عقيدي کي سائنسي اصولن موجب پروڙيو ۽ ان سان سچو رهيو. هڪ دفعي سندس هڪ دوست ايسٽرانامر ايڊمنڊ هيلي هن وٽ آيو ۽ هن کي همٿايائين تہ پنھنجون دريافتون ڪتابي شڪل ۾ ڇپرائي. نيوٽن ان ڳالھ تي راضي ٿيو ۽ 1687ع ۾ سندس ڪتاب "پرنسيپيا" (Principia) ڇپيو جنھن کي اڄ بہ سائنسي دنيا جو سڀ کان وڏو شاهڪار تصور ڪيو ٿو وڃي. سندس ڪتاب ۾ ڪيلڪيولس جي مدد سان سندس جڳ مشھور 3 حرڪت جا قانون (Laws of Motion)، ڪائناتي ڪشش ثقل جو قانون ۽ ٻيا کوڙ فطرتي مشاهدا بيان ڪيا ويا جيڪي اڄ جي جديد سائنس جو بُڻ بڻياد آهن. سندس دريافت ڪيل قانونن جي بدولت ئي صنعتي انقلاب ممڪن ٿي سگهيو. سائنس جي دنيا ۾ سندس عزت صرف دريافتن ۽ ايجادن جي ڪري نہ آهي پر ان سان گڏ سائنسي طريقيڪار ۾ نواڻ آڻڻ بہ تمام وڏي اهميت جوڳي ڳالھ آهي. نيوٽن پنهنجي طبعيت ۾ تمام اناپرست، لڪل، ساڙولو انسان هيو، جيڪو پنهنجي پاڻ کان سواءِ ڪنهن تي بہ يقين نہ ڪندو هيو. رائل سوسائٽي جو ڊائريڪٽر ٿيڻ شرط هن پنهنجي پراڻي دشمن رابرٽ هُڪ جي تصوير لاهي باه ۾ ساڙي ڇڏي. پنھنجي اٿاھ قابليتن جي ڪري انگلينڊ ۾ ڪيٿولڪ چرچ جي بالاداستيء هوندي بہ پروٽسٽنٽ نيوٽن کي انگلينڊ جي بادشاه پنهنجي ڪابينا ۾ جڳھ ڏني. نيوٽن هڪ سال لاءِ برطانوي پارليامينٽ جو حصو رهيو جتي سڄي سال ۾ هُن صرف هڪ جملو ڳالهائيندي ڀرسان ويٺل ميمبر کي چيو؛ "مهرباني ڪري دري بند ڪيو، ٻاهر ڏاڍو سيءُ آهي." نيوٽن جن ڪارنامن جي ڪري سڄي دنيا ۾ اڄ سڃاتو وڃي ٿو. اهي سڀ هن 26 سالن جي ننڍي عمر تائين سرانجام ڏنا. سندس سائنسي طريقيڪار ۽ منطق کي والٽيئر ۽ ايڊم سمٿ سماجي سائنس طور يورپ ۾ لاڳو ڪرڻ جي ڪوشش ڪئي ۽ خاطرخواھ ڪاميابي سان يورپ جي سوچ تي اثر انداز ٿيا. نيوٽن پنھنجو پاڻ کي ڄاڻ واري سمنڊ ڪناري بيٺل ٻار سان مشابھت ڏيندو هيو، جنھن جي تلاش هُئي خوبصورت پٿر ۽ سھڻيون سپيون. کانئس ڪنھن ماڻهو سوال ڪيو تہ توهان ايڏا هوشيار آهيو، ان جو بنيادي سبب ڇا آهي؟ سندس جواب هيو، "ڇاڪاڻ تہ مان پاڻ کان اڳ وارن ديوقامت عظيم انسانن جي ڪلهن تي چڙهي هن ڪائنات کي ڏسان پيو تنھنڪري ئي منھنجي نظر پري تائين آهي." هُن جو پُرتجسس دماغ سوال ڪرڻ جي بي انتھا قابليت رکندو هيو ۽ هُن جو ضمير هميشہ کيس سوالن جا جواب ڳولڻ لاءِ بيچين ۽ ٿرٿلي ۾ رکندو هيو ۽ انسان ذات جي فطرت متعلق پڪي ڄاڻ تي يقين نہ رکندو هيو جيسيتائين پاڻ ڪنھن نتيجي تي نہ پچچي. مشھور جرمن فلسفي فريڊرڪ نٽشي چواڻي، "سچ جو وڏو دشمن ڪُوڙ نہ پر پَڪ آهي." جيڪڏهن پنهنجي اڄ واري سماج تي نظر وجهجي تہ اندازو ٿيندو تہ اسان جو سماج, سماجي ۽ فطري سائنس جي ميدان ۾ 18هين صدي جي يورپ کان بہ پوئتي بيٺو آهي! ڏٺو وڃي تہ نيوٽن فطرت متعلق تمام عام ۽ بنيادي سوال ڪيا ڇو تہ هن پنهنجي وُجود کي پنهنجي آس پاس کان واقف رکڻ پئي چاهيو تنھنڪري هن پراسرار ڪائنات جي تلاءُ ۾ هڪ پٿر اڇلايو. لھرون تمام وڏيون ٿيون جو اڄ تائين اسان انهن جي دائري ۾ ئي جيئون پيا. اضافو:- اصغر ساگر مضمون:-شاھ جبار ==وڌيڪ ڏسو== {{Short description|English polymath (1642–1726)}} {{Good article}} {{Pp-move}} {{Pp-semi-indef}} {{Use British English|date=October 2024}} {{Infobox scientist | honorific_prefix = [[Sir]] | name = Isaac Newton | honorific_suffix = {{post-nominals|country=GBR|size=100%|FRS}} | image = Portrait of Sir Isaac Newton, 1689 (brightened).jpg | alt = Portrait of Newton, a white man with white hair and a brown robe, sitting with his hands folded | caption = [[Portrait of Isaac Newton|Portrait of Newton]], 1689 | birth_date = {{Birth date|df=y|1643|01|04}} | birth_place = {{nowrap|[[Woolsthorpe-by-Colsterworth]],}} Lincolnshire, England | death_date = {{Death date and age|df=y|1727|03|31|1643|01|04}} | death_place = [[Kensington]], Middlesex, England | resting_place = [[Westminster Abbey]] | fields = {{hlist|[[Physics]]|[[natural philosophy]]|[[alchemy]]|[[theology]]|[[mathematics]]|[[astronomy]]|[[economics]]}} | workplaces = {{hlist|[[University of Cambridge]]|[[Royal Society]]|[[Royal Mint]]}} | education = [[Trinity College, Cambridge]] ([[Bachelor of Arts|BA]], 1665; [[Master of Arts|MA]], 1668)<ref>Kevin C. Knox, Richard Noakes (eds.), ''From Newton to Hawking: A History of Cambridge University's Lucasian Professors of Mathematics'', Cambridge University Press, 2003, p. 61.</ref> | academic_advisors = {{unbulleted list | [[Isaac Barrow]]<ref>Feingold, Mordechai. [http://www.oxforddnb.com/view/article/1541 Barrow, Isaac (1630–1677)] {{Webarchive|url=https://web.archive.org/web/20130129154554/http://www.oxforddnb.com/view/article/1541 |date=29 January 2013 }}, ''Oxford Dictionary of National Biography'', [[Oxford University Press]], September 2004; online edn, May 2007. Retrieved 24 February 2009; explained further in {{cite journal |last=Feingold |first=Mordechai |date=1993 |title=Newton, Leibniz, and Barrow Too: An Attempt at a Reinterpretation |journal=Isis |volume=84 |issue=2 |pages=310–338 |bibcode=1993Isis...84..310F |doi=10.1086/356464 |jstor=236236 |s2cid=144019197 |issn=0021-1753}}</ref> | [[Benjamin Pulleyn]]<ref>{{cite web |title=Dictionary of Scientific Biography |url=http://www.chlt.org/sandbox/lhl/dsb/page.50.a.php |archive-url=https://web.archive.org/web/20050225223812/http://www.chlt.org/sandbox/lhl/dsb/page.50.a.php |archive-date=25 February 2005 |at=Notes, No. 4}}</ref>}} | notable_students = {{unbulleted list| [[Roger Cotes]]|[[William Whiston]]}} | awards = {{unbulleted list | [[Fellow of the Royal Society|FRS]]&nbsp;(1672)<ref name="frs">{{cite web |title=Fellows of the Royal Society |url=https://royalsociety.org/about-us/fellowship/fellows |archive-url=https://web.archive.org/web/20150316060617/https://royalsociety.org/about-us/fellowship/fellows |archive-date=16 March 2015 |publisher=Royal Society |location=London}}</ref> | [[Knight Bachelor]]&nbsp;(1705)}} | known_for = {{collapsible list|[[Classical mechanics|Newtonian mechanics]]| [[universal gravitation]]| [[calculus]]| [[Newton's laws of motion]]| [[optics]]| [[binomial series]]| ''[[Philosophiæ Naturalis Principia Mathematica|Principia]]''| [[Newton's method]] | [[Newton's law of cooling]]| [[Newton's identities]]| [[Newton's metal]]| [[Newton line]]| [[Newton–Gauss line]]| [[Newtonian fluid]]| [[Newton's rings]]|''[[Standing on the shoulders of giants]]'' |[[List of things named after Isaac Newton|List of all other works and concepts]]|}} | signature = Isaac Newton signature ws.svg | signature_alt = Signature written in ink in a flowing script | party = [[Whigs (British political party)|Whig]] | module = {{Infobox officeholder| embed = yes | office = [[Parliament of England|Member of Parliament]]<br />for [[Cambridge University (UK Parliament constituency)|the University of Cambridge]] | term_start = 1689 | term_end = 1690 | predecessor = [[Robert Brady (writer)|Robert Brady]] | successor = [[Edward Finch (composer)|Edward Finch]] | term_start1 = 1701 | term_end1 = 1702 | predecessor1 = [[Anthony Hammond (politician)|Anthony Hammond]] | successor1 = [[Arthur Annesley, 5th Earl of Anglesey]] | office2 = President of the Royal Society | order2 = 12th | term_start2 = 1703 | term_end2 = 1727 | predecessor2 = [[John Somers, 1st Baron Somers|John Somers]] | successor2 = [[Hans Sloane]] | office3 = [[Master of the Mint]] | term_start3 = 1699 | term_end3 = 1727 | predecessor3 = [[Thomas Neale]] | successor3 = [[John Conduitt]] | suboffice3 = [[Warden of the Mint]] | subterm3 = 1696–1699 | office4 = Lucasian Professor of Mathematics | order4 = 2nd | term_start4 = 1669 | term_end4 = 1702 | predecessor4 = [[Isaac Barrow]] | successor4 = [[William Whiston]] }} }} '''Sir Isaac Newton''' ({{OldStyleDate|4 January|1643|25 December}}{{snd}}{{OldStyleDate|31 March|1727|20 March}}) was 1643 نيوٽن (4 جنوري - 31 مارچ 1727) هڪ انگريزي پولي ميٿ ,هڪ رياضي دان، فزڪسسٽ، فلڪيات دان، ڪيميا دان، عالم ۽ ليکڪ جي حيثيت سان سرگرم هو. نيوٽن سائنسي انقلاب ۽ ان کان پوءِ روشن خيالي جي د (renaissance) ۾ هڪ اهم شخصيت هو. سندس ڪتاب Philosophiæ Naturalis Principia Mathematica (قدرتي فلسفي جا رياضي جا اصول)، پهريون ڀيرو 1687 ۾ شايع ٿيو. ان فزڪس ۾ پهريون عظيم اتحاد (متحد) حاصل ڪيو ۽ ڪلاسيڪل ميڪينڪس قائم ڪيو. نيوٽن آپٽڪس ۾ پڻ بنيادي ڪردار ادا ڪيو. ۽ جرمن رياضي دان گوٽفريڊ ولهيلم ليبنز سان گڏ لامحدود (تمام ننڍو، صفر جي ويجهو) ڪيلڪولس ٺاهڻ جو ڪريڊٽ شيئر ڪري ٿو. جيتوڻيڪ هن ليبنز کان سال اڳ ڪيلڪولس تيار ڪيو. نيوٽن سائنسي طريقو ۾ حصو ورتو ۽ ان کي بهتر بڻايو. ۽ سندس ڪم کي جديد سائنس کي اڳتي آڻڻ ۾ سڀ کان وڌيڪ اثرائتو سمجهيو ويندو آهي. <nowiki>*</nowiki> پرنسپيا ۾، نيوٽن حرڪت ۽ عالمگير ڪشش ثقل جا قانون ٺاهيا. جيڪو صدين تائين غالب سائنسي نقطه نظر قائم ڪيو. جيستائين ان کي نظريي جي اضافيت سان ختم نه ڪيو ويو. هن ڪيپلر جي گرهن جي حرڪت جي قانونن کي حاصل ڪرڻ لاءِ ڪشش ثقل جي پنهنجي رياضياتي وضاحت استعمال ڪئي. لهرن جو حساب. ڪاميٽ جي رفتار (رستي). مساوات ۽ ٻين رجحانن جي اڳڀرائي. شمسي نظام جي هيليو سينٽريٽي (سج کي نظام جي مرڪز طور) بابت شڪ کي ختم ڪرڻ. نيوٽن ٻن جسمن جي مسئلي کي حل ڪيو. ۽ ٽن جسمن جي مسئلي کي متعارف ڪرايو. هن اهو ظاهر ڪيو ته زمين ۽ آسماني جسمن تي شين جي حرڪت ساڳئي اصولن سان حساب ڪري سگهجي ٿي. an English [[polymath]] active as a [[mathematician]], [[physicist]], [[astronomer]], [[alchemist]], [[theologian]], and author.<ref name=":1">{{Cite web |last=Alex |first=Berezow |date=4 February 2022 |title=Who was the smartest person in the world? |url=https://bigthink.com/the-past/smartest-person-world-isaac-newton/ |access-date=28 September 2023 |website=Big Think |archive-date=28 September 2023 |archive-url=https://web.archive.org/web/20230928161012/https://bigthink.com/the-past/smartest-person-world-isaac-newton/ |url-status=live }}</ref> Newton was a key figure in the [[Scientific Revolution]] and the [[Age of Enlightenment|Enlightenment]] that followed.<ref name=":9">{{Cite book |last=Matthews |first=Michael R. |author-link=Michael R. Matthews |url=https://books.google.com/books?id=JrcqBgAAQBAJ&pg=PA181 |title=Time for Science Education: How Teaching the History and Philosophy of Pendulum Motion Can Contribute to Science Literacy |date=2000 |publisher=Springer Science+Business Media, LLC |isbn=978-0-306-45880-4 |series= |location=New York |pages=181 |language=en}}</ref> His book {{lang|la|[[Philosophiæ Naturalis Principia Mathematica]]}} (''Mathematical Principles of Natural Philosophy''), first published in 1687, [[Unification of theories in physics#Unification of gravity and astronomy|achieved the first great unification in physics]] and established [[classical mechanics]].<ref name=":32">{{cite journal |last=Rynasiewicz |first=Robert A. |title=Newton's Views on Space, Time, and Motion |date=22 August 2011 |journal=[[Stanford Encyclopedia of Philosophy]] |pages= |url=https://plato.stanford.edu/entries/newton-stm/ |access-date=15 November 2024 |publisher=Stanford University |author-link=Robert Rynasiewicz}}</ref><ref name=":15">{{cite book |author=Klaus Mainzer |url=https://books.google.com/books?id=QekhAAAAQBAJ&pg=PA8 |title=Symmetries of Nature: A Handbook for Philosophy of Nature and Science |date=2 December 2013 |publisher=Walter de Gruyter |isbn=978-3-11-088693-1 |page=8 }}</ref> Newton also made seminal contributions to [[optics]], and [[Leibniz–Newton calculus controversy|shares credit]] with German mathematician [[Gottfried Wilhelm Leibniz]] for formulating [[calculus|infinitesimal calculus]], though he developed calculus years before Leibniz. Newton contributed to and refined the [[scientific method]], and his work is considered the most influential in bringing forth modern science. In the {{lang|la|Principia}}, Newton formulated the [[Newton's laws of motion|laws of motion]] and [[Newton's law of universal gravitation|universal gravitation]] that formed the dominant scientific viewpoint for centuries until it was superseded by the [[theory of relativity]]. He used his mathematical description of [[gravity]] to derive [[Kepler's laws of planetary motion]], account for [[tide]]s, the [[Trajectory|trajectories]] of [[comet]]s, the [[Axial precession|precession of the equinoxes]] and other phenomena, eradicating doubt about the [[Solar System]]'s [[heliocentrism|heliocentricity]].<ref>{{Cite book |last=More |first=Louis Trenchard |url=https://archive.org/details/isaacnewtonbiogr0000loui/page/327 |title=Isaac Newton: A Biography |publisher=Dover Publications |year=1934 |page=327}}</ref> Newton solved the [[two-body problem]], and introduced the [[three-body problem]]. He demonstrated that the [[Dynamics (mechanics)|motion of objects]] on Earth and [[Astronomical object|celestial bodies]] could be accounted for by the same principles. Newton's inference that the Earth is an [[Spheroid#Oblate spheroids|oblate spheroid]] was later confirmed by the geodetic measurements of [[Alexis Clairaut]], [[Charles Marie de La Condamine]], and others, convincing most European scientists of the superiority of Newtonian mechanics over earlier systems. He was also the first to calculate the [[age of Earth]] by experiment, and described a precursor to the modern [[wind tunnel]]. Newton built the [[Newtonian telescope|first reflecting telescope]] and developed a sophisticated [[Color theory|theory of colour]] based on the observation that a [[Dispersive prism|prism]] separates [[Electromagnetic spectrum#Visible radiation (light)|white light]] into the colours of the [[visible spectrum]]. His work on light was collected in his book ''[[Opticks]]'', published in 1704. He originated prisms as [[Beam expander|beam expanders]] and [[Multiple-prism dispersion theory|multiple-prism arrays]], which would later become integral to the development of [[Tunable laser|tunable lasers]]. He also anticipated [[wave–particle duality]] and was the first to theorize the [[Goos–Hänchen effect]]. He further formulated an [[Newton's law of cooling|empirical law of cooling]], which was the first heat transfer formulation and serves as the formal basis of [[Convection (heat transfer)|convective heat transfer]],<ref name=":13">{{Cite journal |last1=Cheng |first1=K. C. |last2=Fujii |first2=T. |date=1998 |title=Isaac Newton and Heat Transfer |url=http://www.tandfonline.com/doi/abs/10.1080/01457639808939932 |journal=Heat Transfer Engineering |volume=19 |issue=4 |pages=9–21 |doi=10.1080/01457639808939932 |issn=0145-7632|url-access=subscription }}</ref> made the first theoretical calculation of the [[speed of sound]], and introduced the notions of a [[Newtonian fluid]] and a [[black body]]. He was also the first to explain the [[Magnus effect]]. Furthermore, he made early studies into [[electricity]]. In addition to his creation of calculus, Newton's work on mathematics was extensive. He generalized the [[binomial theorem]] to any real number, introduced the [[Puiseux series]], was the first to state [[Bézout's theorem]], classified most of the [[Cubic plane curve|cubic plane curves]], contributed to the study of [[Cremona transformation|Cremona transformations]], developed [[Newton's method|a method]] for approximating the [[Zero of a function|roots of a function]], and also originated the [[Newton–Cotes formulas]] for [[numerical integration]]. He further initiated the field of [[calculus of variations]], devised an early form of [[regression analysis]], and was a pioneer of [[vector calculus|vector analysis]]. Newton was a fellow of [[Trinity College, Cambridge|Trinity College]] and the second [[Lucasian Professor of Mathematics]] at the [[University of Cambridge]]; he was appointed at the age of 26. He was a devout but unorthodox Christian who privately rejected the doctrine of the [[Trinity]]. He refused to take [[holy orders]] in the [[Church of England]], unlike most members of the Cambridge faculty of the day. Beyond his work on the [[mathematical sciences]], Newton dedicated much of his time to the study of [[alchemy]] and [[Chronology of the Bible|biblical chronology]], but most of his work in those areas remained unpublished until long after his death. Politically and personally tied to the [[Whigs (British political party)|Whig party]], Newton served two brief terms as [[Cambridge University (UK Parliament constituency)|Member of Parliament for the University of Cambridge]], in 1689–1690 and 1701–1702. He was [[knight]]ed by [[Anne, Queen of Great Britain|Queen Anne]] in 1705 and spent the last three decades of his life in London, serving as [[Warden of the Mint|Warden]] (1696–1699) and [[Master of the Mint|Master]] (1699–1727) of the [[Royal Mint]], in which he increased the accuracy and security of British coinage, as well as the president of the [[Royal Society]] (1703–1727). ==ٻاهريان ڳنڍڻا== {{Sister project links|s=Author:Isaac Newton|wikt=no|n=no|b=Introduction to Astrophysics/Historical Context/Isaac Newton}} * * [http://scienceworld.wolfram.com/biography/Newton.html ScienceWorld biography] by [[Eric Weisstein]] * [http://www.chlt.org/sandbox/lhl/dsb/page.50.a.php Dictionary of Scientific Biography] * [http://www.newtonproject.sussex.ac.uk/prism.php?id=1 "The Newton Project"] * [http://www.isaacnewton.ca/ "The Newton Project – Canada"] * [http://www.pbs.org/wgbh/nova/newton/ "Newton's Dark Secrets"] – [[Nova (TV series)|NOVA]] TV programme * from ''The [[Stanford Encyclopedia of Philosophy]]:'' ** [http://plato.stanford.edu/entries/newton/ "Isaac Newton"], by George Smith ** [http://plato.stanford.edu/entries/newton-principia/ "Newton's ''Philosophiae Naturalis Principia Mathematica''"], by George Smith ** [http://plato.stanford.edu/entries/newton-philosophy/ "Newton's Philosophy"], by Andrew Janiak ** [http://plato.stanford.edu/entries/newton-stm/ "Newton's views on space, time, and motion"], by Robert Rynasiewicz * [http://www.tqnyc.org/NYC051308/index.htm "Newton's Castle"] – educational material * [http://www.dlib.indiana.edu/collections/newton "The Chymistry of Isaac Newton"], research on his alchemical writings * [http://hss.fullerton.edu/philosophy/GeneralScholium.htm The "General Scholium" to Newton's ''Principia''] {{Webarchive|url=https://archive.is/20030513080422/http://hss.fullerton.edu/philosophy/GeneralScholium.htm |date=2003-05-13 }} * Kandaswamy, Anand M. [http://www.math.rutgers.edu/courses/436/Honors02/newton.html "''The Newton/Leibniz Conflict in Context''"] * [http://www.phaser.com/modules/historic/newton/index.html Newton's First ODE] {{Webarchive|url=https://web.archive.org/web/20070705191603/http://www.phaser.com/modules/historic/newton/index.html |date=2007-07-05 }}&nbsp;– A study by on how Newton approximated the solutions of a first-order ODE using infinite series * [http://www.ltrc.mcmaster.ca/newton/ "The Mind of Isaac Newton"] {{Webarchive|url=https://web.archive.org/web/20061213222519/http://www.ltrc.mcmaster.ca/newton/ |date=2006-12-13 }} – images, audio, animations and interactive segments * [http://www.enlighteningscience.sussex.ac.uk/home Enlightening Science] Videos on Newton's biography, optics, physics, reception, and on his views on science and religion * [http://www-history.mcs.st-andrews.ac.uk/Mathematicians/Newton.html Newton biography (University of St Andrews)] * {{cite EB1911|wstitle=Newton, Sir Isaac}} --> Chisholm, Hugh, ed. (1911). "[[s:1911 Encyclopædia Britannica/Newton, Sir Isaac|Newton, Sir Isaac]]". ''[[Encyclopædia Britannica]]'' (11th ed.). Cambridge University Press. * The [[Linda Hall Library]] has digitized [http://lhldigital.lindahall.org/cdm/search/searchterm/Canon%20Chronicus%20Aegyptiacus/field/title/mode/exact/conn/and/order/nosort Two copies of John Marsham's (1676) ''Canon Chronicus Aegyptiacus''] {{Webarchive|url=https://web.archive.org/web/20200920090207/http://lhldigital.lindahall.org/cdm/search/searchterm/Canon%20Chronicus%20Aegyptiacus/field/title/mode/exact/conn/and/order/nosort |date=2020-09-20 }}, one of which was [http://lhldigital.lindahall.org/cdm/ref/collection/philsci/id/139 owned by Isaac Newton] {{Webarchive|url=https://web.archive.org/web/20201013060423/http://lhldigital.lindahall.org/cdm/ref/collection/philsci/id/139 |date=2020-10-13 }}, who marked salient passages by dog-earing the pages so that the corners acted as arrows. The books can be compared side-by-side to show what interested Newton. '''نيوٽن جون لکڻيون''' * [http://www.newtonproject.sussex.ac.uk/prism.php?id=43 Newton's works – full texts, at the Newton Project] * [http://web.nli.org.il/sites/NLI/English/collections/Humanities/Pages/newton.aspx The Newton Manuscripts at the National Library of Israel – the collection of all his religious writings] * [http://rack1.ul.cs.cmu.edu/is/newton/ "Newton's ''Principia''"] {{Webarchive|url=https://web.archive.org/web/20090810003302/http://rack1.ul.cs.cmu.edu/is/newton/ |date=2009-08-10 }} – read and search * [http://www.earlymoderntexts.com/ ''Descartes, Space, and Body'' and ''A New Theory of Light and Colour''], modernised readable versions by Jonathan Bennett * [https://archive.org/stream/opticksoratreat00newtgoog#page/n6/mode/2up ''Opticks, or a Treatise of the Reflections, Refractions, Inflexions and Colours of Light''], full text on [[archive.org]] * [http://cudl.lib.cam.ac.uk/collections/newton "Newton Papers"] – Cambridge Digital Library * (1686) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/15635 "A letter of Mr. Isaac Newton... containing his new theory about light and colors"] {{Webarchive|url=https://web.archive.org/web/20201009103331/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/15635 |date=2020-10-09 }}, ''Philosophical Transactions of the Royal Society'', Vol. XVI, No. 179, pp.&nbsp;3057–3087. – digital facsimile at the [[Linda Hall Library]] * (1704) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/3080 ''Opticks''] {{Webarchive|url=https://web.archive.org/web/20201016062120/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/3080 |date=2020-10-16 }} – digital facsimile at the [[Linda Hall Library]] * (1719) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/33634 ''Optice''] {{Webarchive|url=https://web.archive.org/web/20200908133047/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/33634 |date=2020-09-08 }} – digital facsimile at the [[Linda Hall Library]] * (1729) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/35921 ''Lectiones opticae''] {{Webarchive|url=https://web.archive.org/web/20201027014312/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/35921 |date=2020-10-27 }} – digital facsimile at the [[Linda Hall Library]] * (1749) [http://lhldigital.lindahall.org/cdm/ref/collection/color/id/35293 ''Optices libri tres''] {{Webarchive|url=https://web.archive.org/web/20200916232516/http://lhldigital.lindahall.org/cdm/ref/collection/color/id/35293 |date=2020-09-16 }} – digital facsimile at the [[Linda Hall Library]] {{navboxes |title=Related navigational templates |list= {{flatlist| * [[Template:Lucasian Professors of Mathematics|Lucasian Professors of Mathematics]] (over 20 topics) * [[Template:Royal Society presidents 1700s|Royal Society presidents 1700s]] (over 15 topics) * [[Template:Age of Enlightenment|Age of Enlightenment]] (over 60 topics) * [[Template:Metaphysics|Metaphysics]] (over 130 topics) * [[Template:Philosophy of science|Philosophy of science]] (over 130 topics) * [[Template:Scientists whose names are used as SI units|Scientists whose names are used as SI units]] (over 20 topics) }}}} {{Authority control}} {{DEFAULTSORT:Newton, Isaac}} ==حوالا== {{حوالا}} [[زمرو:سائنسدان]] [[زمرو:طبیعیات دان]] [[زمرو:آئزڪ نيوٽن]] [[زمرو:ڪلاسيڪل فزڪس]] [[زمرو:نظرياتي سائنسدان]] [[زمرو:سائنسدان جي فهرست]] [[زمرو:طبيعيات دان جي فهرست]] [[زمرو:1642ع جون پيدائشون]] [[زمرو:1727ع جون وفاتون]] [[زمرو:17th-century English mathematicians]] [[زمرو:17th-century English writers]] [[زمرو:17th-century Latin-language writers]] [[زمرو:18th-century English mathematicians]] [[زمرو:18th-century English writers]] [[زمرو:18th-century Latin-language writers]] [[زمرو:Alumni of Trinity College, Cambridge]] [[زمرو:Antitrinitarians]] [[زمرو:Apocalypticists]] [[زمرو:Ballistics experts]] [[زمرو:Burials at Westminster Abbey]] [[زمرو:Color scientists]] [[زمرو:Copernican Revolution]] [[زمرو:English alchemists]] [[زمرو:English Anglicans]] [[زمرو:English astronomers]] [[زمرو:English inventors]] [[زمرو:English mathematicians]] [[زمرو:English MPs 1689–90]] [[زمرو:English MPs 1701–02]] [[زمرو:English physicists]] [[زمرو:Enlightenment scientists]] [[زمرو:Experimental physicists]] [[زمرو:Fellows of the Royal Society]] [[زمرو:Fellows of Trinity College, Cambridge]] [[زمرو:Hermeticists]] [[زمرو:History of calculus]] [[زمرو:Knights Bachelor]] [[زمرو:Lucasian Professors of Mathematics]] [[زمرو:Masters of the Mint]] [[زمرو:Members of the Parliament of the United Kingdom for university constituencies]] [[زمرو:Members of the pre-1707 Parliament of England for the University of Cambridge]] [[زمرو:Natural philosophers]] [[زمرو:Optical physicists]] [[زمرو:People educated at The King's School, Grantham]] [[زمرو:People from South Kesteven (district)]] [[زمرو:Philosophers of science]] [[زمرو:Post-Reformation Arian Christians]] [[زمرو:Presidents of the Royal Society]] [[زمرو:Scientific instrument makers]] [[زمرو:Theoretical physicists]] [[زمرو:Geometers]] [[زمرو:18th-century British scientists]] mk3iqyyz255qwhn0jjhmj99ohvneijw وڪيپيڊيا:ڊيٽابيس رپورٽس/اڄ جون پيدائشون 4 47319 322510 320886 2025-07-10T18:20:18Z ListeriaBot 10240 Wikidata list updated [V2] 322510 wikitext text/x-wiki {{bots|allow=ListeriaBot}} روان سال ۾ اڄ جي تاريخ يعني '''{{#time:d F|{{REVISIONTIMESTAMP}}}}''' تي ڄمڻ (پيدا ٿيڻ وارن ماڻهن جي فهرست هيٺ درج آهي، پَڪ سان (يقيناً) ان ۾ ڪيترائي ماڻهو اڃا به جيئرا (زندهه) حيات هوندا. آخري نئين سر شروعات: <onlyinclude>{{#time: Y-m-d H:i|{{REVISIONTIMESTAMP}}}}</onlyinclude> == فهرست == {{Wikidata list |sparql=SELECT ?item WHERE { ?date_node wikibase:timePrecision "11"^^xsd:integer . ?date_node wikibase:timeValue ?date . FILTER (year(?date) > 1899) FILTER (day(?date) = day(now())) FILTER (month(?date) = month(now())) ?item p:P569/<http://www.wikidata.org/prop/statement/value/P569> ?date_node . ?item wdt:P31 wd:Q5 . OPTIONAL {?item wdt:P570 ?dod} FILTER (!bound(?dod)) } ORDER BY DESC(?date) ?item |columns=P18,P569:تاريخ پيدائش,label:ماڻهو,وضاحت,P106,P39,P27,P735 |thumb=125 |autolist=fallback |links=local }} {| class='wikitable sortable' ! تصوير ! تاريخ پيدائش ! ماڻهو ! وضاحت ! پيشو ! position held ! شهريت ! ذاتي نالو |- | | 1953-07-10 | [[فرانڪوئس بيٽنڪورٽ ميئرس]] | | [[ڪاروبار ڪندڙ]]<br/>[[ليکڪ]]<br/>''[[:d:Q131524|entrepreneur]]''<br/>''[[:d:Q1062083|billionaire]]'' | ''[[:d:Q1127270|deputy chairperson]]'' | [[فرانس]] | ''[[:d:Q1244936|Françoise]]'' |- | [[فائل:Shri Rajnath Singh, Union Minister of Defence at a webinar on August 04, 2022.jpg|center|125px]] | 1951-07-10 | [[راجناٿ سنگھ]] | | [[سياستدان]]<br/>''[[:d:Q169470|physicist]]'' | ''[[:d:Q16556694|member of the Lok Sabha]]'' | [[ڀارت]] | |} {{Wikidata list end}} [[زمرو:اڄ جي تاريخ ڄمڻ وارا ماڻهو]] [[زمرو:مارچ جون پيدائشون]] ndntcfivwo2ldv5qmsmuy3n4ramjkqg دوري جدول 0 49012 322498 318332 2025-07-10T12:26:02Z Ibne maryam 17680 /* حوالا */ 322498 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|Periodic table of the chemical elements showing the most or more commonly named [[Names for sets of chemical elements|sets of elements]] (in periodic tables), and a traditional [[dividing line between metals and nonmetals]]. The [[Block (periodic table)#f-block|f-block]] actually fits between [[alkaline earth metals|groups 2]] and [[scandium group|3]]; it is usually shown at the foot of the table to save horizontal space.]] ڪيميائي عنصرن جي دوري جدول جيڪا عنصرن جي سڀ کان وڌيڪ يا وڌيڪ عام طور تي نامزد ٿيل سيٽ (دورياتي جدولن ۾)، ۽ ڌاتو ۽ غير ڌاتو جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي. * دورياتي جدول، جنهن کي عنصرن جي دوراني جدول پڻ سڏيو ويندو آهي، ڪيميائي عنصرن جي قطارن ("دور") ۽ ڪالمن ("گروپن") ۾ ترتيب ڏنل ترتيب آهي. اهو ڪيمسٽري جو هڪ آئڪن آهي ۽ فزڪس ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندو آهي. اهو دوراني قانون جي تصوير آهي، جيڪو بيان ڪري ٿو ته جڏهن عنصرن کي انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنو ويندو آهي ته انهن جي خاصيتن جي تقريبن ورهاست واضح آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي جن کي بلاڪ سڏيو ويندو آهي. ساڳئي گروپ ۾ عنصر ساڳيا ڪيميائي خاصيتون ڏيکاريندا آهن. * عمودي، افقي ۽ ترچھا رجحان دوراني جدول جي خاصيت ڪن ٿا. ڌاتو ڪردار هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندو آهي. غير ڌاتو ڪردار دوراني جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندو آهي. پهرين پيريوڊڪ ٽيبل جيڪا عام طور تي قبول ڪئي وئي اها 1869 ۾ روسي ڪيمسٽ دمتري مينڊيليف جي هئي؛ هن پيريوڊڪ قانون کي ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي تيار ڪيو. جيئن ته ان وقت سڀئي عنصر معلوم نه هئا، هن جي پيريوڊڪ ٽيبل ۾ خال هئا، ۽ مينڊيليف ڪاميابي سان پيريوڊڪ قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. The '''periodic table''', also known as the '''periodic table of the elements''', is an ordered arrangement of the [[chemical element]]s into rows ("[[Period (periodic table)|periods]]") and columns ("[[Group (periodic table)|groups]]"). It is an [[Cultural icon|icon]] of [[chemistry]] and is widely used in [[physics]] and other sciences. It is a depiction of the [[Periodic trends|periodic law]], which states that when the elements are arranged in order of their [[atomic number]]s an approximate [[periodic function|recurrence of their properties]] is evident. The table is divided into four roughly rectangular areas called [[block (periodic table)|blocks]]. Elements in the same group tend to show similar chemical characteristics. Vertical, horizontal and diagonal [[Periodic trends|trends]] characterize the periodic table. [[Metal]]lic character increases going down a group and from right to left across a period. [[Nonmetal (chemistry)|Nonmetallic]] character increases going from the bottom left of the periodic table to the top right. The first periodic table to become generally accepted was that of the Russian chemist [[Dmitri Mendeleev]] in 1869; he formulated the periodic law as a dependence of chemical properties on [[atomic mass]]. As not all elements were then known, there were gaps in his periodic table, and Mendeleev successfully used the periodic law to [[Mendeleev's predicted elements|predict some properties of some of the missing elements]]. The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist;{{efn|name=transuranium}} to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] dsc9wgw760em18t4km2hzek9sai2qae 322499 322498 2025-07-10T12:27:18Z Ibne maryam 17680 322499 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|Periodic table of the chemical elements showing the most or more commonly named [[Names for sets of chemical elements|sets of elements]] (in periodic tables), and a traditional [[dividing line between metals and nonmetals]]. The [[Block (periodic table)#f-block|f-block]] actually fits between [[alkaline earth metals|groups 2]] and [[scandium group|3]]; it is usually shown at the foot of the table to save horizontal space.]] ڪيميائي عنصرن جي دوري جدول جيڪا عنصرن جي سڀ کان وڌيڪ يا وڌيڪ عام طور تي نامزد ٿيل سيٽ (دورياتي جدولن ۾)، ۽ ڌاتو ۽ غير ڌاتو جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي. * دورياتي جدول، جنهن کي عنصرن جي دوراني جدول پڻ سڏيو ويندو آهي، ڪيميائي عنصرن جي قطارن ("دور") ۽ ڪالمن ("گروپن") ۾ ترتيب ڏنل ترتيب آهي. اهو ڪيمسٽري جو هڪ آئڪن آهي ۽ فزڪس ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندو آهي. اهو دوراني قانون جي تصوير آهي، جيڪو بيان ڪري ٿو ته جڏهن عنصرن کي انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنو ويندو آهي ته انهن جي خاصيتن جي تقريبن ورهاست واضح آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي جن کي بلاڪ سڏيو ويندو آهي. ساڳئي گروپ ۾ عنصر ساڳيا ڪيميائي خاصيتون ڏيکاريندا آهن. * عمودي، افقي ۽ ترچھا رجحان دوراني جدول جي خاصيت ڪن ٿا. ڌاتو ڪردار هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندو آهي. غير ڌاتو ڪردار دوراني جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندو آهي. پهرين پيريوڊڪ ٽيبل جيڪا عام طور تي قبول ڪئي وئي اها 1869 ۾ روسي ڪيمسٽ دمتري مينڊيليف جي هئي؛ هن پيريوڊڪ قانون کي ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي تيار ڪيو. جيئن ته ان وقت سڀئي عنصر معلوم نه هئا، هن جي پيريوڊڪ ٽيبل ۾ خال هئا، ۽ مينڊيليف ڪاميابي سان پيريوڊڪ قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. The '''periodic table''', also known as the '''periodic table of the elements''', is an ordered arrangement of the [[chemical element]]s into rows ("[[Period (periodic table)|periods]]") and columns ("[[Group (periodic table)|groups]]"). It is an [[Cultural icon|icon]] of [[chemistry]] and is widely used in [[physics]] and other sciences. It is a depiction of the [[Periodic trends|periodic law]], which states that when the elements are arranged in order of their [[atomic number]]s an approximate [[periodic function|recurrence of their properties]] is evident. The table is divided into four roughly rectangular areas called [[block (periodic table)|blocks]]. Elements in the same group tend to show similar chemical characteristics. Vertical, horizontal and diagonal [[Periodic trends|trends]] characterize the periodic table. [[Metal]]lic character increases going down a group and from right to left across a period. [[Nonmetal (chemistry)|Nonmetallic]] character increases going from the bottom left of the periodic table to the top right. The first periodic table to become generally accepted was that of the Russian chemist [[Dmitri Mendeleev]] in 1869; he formulated the periodic law as a dependence of chemical properties on [[atomic mass]]. As not all elements were then known, there were gaps in his periodic table, and Mendeleev successfully used the periodic law to [[Mendeleev's predicted elements|predict some properties of some of the missing elements]]. The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] lopklpgkt428ac0jc48uv8stez9w9la 322500 322499 2025-07-10T12:32:17Z Ibne maryam 17680 322500 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|Periodic table of the chemical elements showing the most or more commonly named [[Names for sets of chemical elements|sets of elements]] (in periodic tables), and a traditional [[dividing line between metals and nonmetals]]. The [[Block (periodic table)#f-block|f-block]] actually fits between [[alkaline earth metals|groups 2]] and [[scandium group|3]]; it is usually shown at the foot of the table to save horizontal space.]] ڪيميائي عنصرن جي دوري جدول جيڪا عنصرن جي سڀ کان وڌيڪ يا وڌيڪ عام طور تي نامزد ٿيل سيٽ (دورياتي جدولن ۾)، ۽ ڌاتو ۽ غير ڌاتو جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي. دوري جدول، جنهن کي عنصرن جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي عنصرن]] جي قطارن ("دور") ۽ ڪالمن ("گروپن") ۾ ترتيب ڏنل ترتيب آهي. اهو [[علم ڪيميا|ڪيميا]] جو هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندو آهي. اهو دوري قانون جي تصوير آهي، جيڪو بيان ڪري ٿو ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي ته انهن جي خاصيتن جي تقريبن ورهاست واضح آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي جن کي بلاڪ سڏيو ويندو آهي. ساڳئي گروپ ۾ عنصر ساڳيا ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ترچھا رجحان دوراني جدول جي خاصيت ڪن ٿا. ڌاتو ڪردار هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندو آهي. غير ڌاتو ڪردار دوراني جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندو آهي. پهرين پيريوڊڪ ٽيبل جيڪا عام طور تي قبول ڪئي وئي اها 1869ع ۾ روسي ڪيميادان، دمتري مينڊيليف جي هئي؛ هن دوري قانون کي ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي تيار ڪيو. جيئن ته ان وقت سڀئي عنصر معلوم نه هئا، هن جي پيريوڊڪ ٽيبل ۾ خال هئا، ۽ مينڊيليف ڪاميابي سان پيريوڊڪ قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. The '''periodic table''', also known as the '''periodic table of the elements''', is an ordered arrangement of the [[chemical element]]s into rows ("[[Period (periodic table)|periods]]") and columns ("[[Group (periodic table)|groups]]"). It is an [[Cultural icon|icon]] of [[chemistry]] and is widely used in [[physics]] and other sciences. It is a depiction of the [[Periodic trends|periodic law]], which states that when the elements are arranged in order of their [[atomic number]]s an approximate [[periodic function|recurrence of their properties]] is evident. The table is divided into four roughly rectangular areas called [[block (periodic table)|blocks]]. Elements in the same group tend to show similar chemical characteristics. Vertical, horizontal and diagonal [[Periodic trends|trends]] characterize the periodic table. [[Metal]]lic character increases going down a group and from right to left across a period. [[Nonmetal (chemistry)|Nonmetallic]] character increases going from the bottom left of the periodic table to the top right. The first periodic table to become generally accepted was that of the Russian chemist [[Dmitri Mendeleev]] in 1869; he formulated the periodic law as a dependence of chemical properties on [[atomic mass]]. As not all elements were then known, there were gaps in his periodic table, and Mendeleev successfully used the periodic law to [[Mendeleev's predicted elements|predict some properties of some of the missing elements]]. The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] qkck2t5g6wz1398gz4je0bhfngky9p4 322501 322500 2025-07-10T13:23:48Z Ibne maryam 17680 322501 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|Periodic table of the chemical elements showing the most or more commonly named [[Names for sets of chemical elements|sets of elements]] (in periodic tables), and a traditional [[dividing line between metals and nonmetals]]. The [[Block (periodic table)#f-block|f-block]] actually fits between [[alkaline earth metals|groups 2]] and [[scandium group|3]]; it is usually shown at the foot of the table to save horizontal space.]] ڪيميائي عنصرن جي دوري جدول جيڪا عنصرن جي سڀ کان وڌيڪ يا وڌيڪ عام طور تي نامزد ٿيل سيٽ (دورياتي جدولن ۾)، ۽ ڌاتو ۽ غير ڌاتو جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي. دوري جدول، جنهن کي عنصرن جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي عنصرن]] جي قطارن ("دور") ۽ ڪالمن ("گروپن") ۾ ترتيب ڏنل ترتيب آهي. اهو [[علم ڪيميا|ڪيميا]] جو هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندو آهي. اهو دوري قانون جي تصوير آهي، جيڪو بيان ڪري ٿو ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي ته انهن جي خاصيتن جي تقريبن ورهاست واضح آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي جن کي بلاڪ سڏيو ويندو آهي. ساڳئي گروپ ۾ عنصر ساڳيا ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ترچھا رجحان دوراني جدول جي خاصيت ڪن ٿا. ڌاتو ڪردار هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندو آهي. غير ڌاتو ڪردار دوراني جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندو آهي. پهرين پيريوڊڪ ٽيبل جيڪا عام طور تي قبول ڪئي وئي اها 1869ع ۾ روسي ڪيميادان، ديمتري مينڊيليف جي هئي؛ هن دوري قانون کي ايٽمي مايو تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو. جيئن ته ان وقت سڀئي عنصر معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. == تفصيل == The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] m96w88ol9ys2282rjhoa1wt78vc7tcg 322502 322501 2025-07-10T13:24:16Z Ibne maryam 17680 322502 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] rx91ct1mfyn618uxy1na3xqtbfu69s5 322503 322502 2025-07-10T13:45:38Z Ibne maryam 17680 322503 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|Periodic table of the chemical elements showing the most or more commonly named [[Names for sets of chemical elements|sets of elements]] (in periodic tables), and a traditional [[dividing line between metals and nonmetals]]. The [[Block (periodic table)#f-block|f-block]] actually fits between [[alkaline earth metals|groups 2]] and [[scandium group|3]]; it is usually shown at the foot of the table to save horizontal space.]] ڪيميائي عنصرن جي دوري جدول جيڪا عنصرن جي سڀ کان وڌيڪ يا وڌيڪ عام طور تي نامزد ٿيل سيٽ (دورياتي جدولن ۾)، ۽ ڌاتو ۽ غير ڌاتو جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي. '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها دوري قانون جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي ڪيميادان، ديمتري مينڊيليف جي آهي. هن اها جدول کي دوري قانون جي ايٽمي مايو (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] qj5eo7f42himfu0lqe751nqgqchskp0 322504 322503 2025-07-10T13:50:19Z Ibne maryam 17680 322504 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪا دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها دوري قانون جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي ڪيميادان، ديمتري مينڊيليف جي آهي. هن اها جدول کي دوري قانون جي ايٽمي مايو (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] hcz6ckn8f9v1r1urfae442j8dka86wj 322505 322504 2025-07-10T13:53:50Z Ibne maryam 17680 322505 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪا دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] ltxz8t7nxixqeoo4jxmrkmh4uo2c3id 322506 322505 2025-07-10T14:01:33Z Ibne maryam 17680 322506 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪا دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ويو. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == The periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 7zvlze7xvr5wa4anifxb0yzl5hsnq3e 322509 322506 2025-07-10T17:14:43Z Ibne maryam 17680 322509 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪا دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ويو. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان پهتي ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن. دوري جدول ۽ قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان جاري آهي. فطرت ۾، صرف ايٽمي نمبر 94 تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال 2010ع تائين، پهرين 118 عنصر جي سڃاڻپ ٿي وئي، جئين ته غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو. ان ڪري جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جيتوڻيڪ اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر ممڪن آهن، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. جوڙجڪ: تبديليون: periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 3li9ad95ugacny0e5ob2yanfd3o9hi8 322512 322509 2025-07-10T19:11:04Z Ibne maryam 17680 322512 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪا دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ويو. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان پهتي ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن. دوري جدول ۽ قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان جاري آهي. فطرت ۾، صرف ايٽمي نمبر 94 تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال 2010ع تائين، پهرين 118 عنصر جي سڃاڻپ ٿي وئي، جئين ته غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو. ان ڪري جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 7s6rc75vdar9qs68ldyr3jae1de8myv 322513 322512 2025-07-10T19:15:49Z Ibne maryam 17680 322513 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪا دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان پهتي ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن. دوري جدول ۽ قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان جاري آهي. فطرت ۾، صرف ايٽمي نمبر 94 تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال 2010ع تائين، پهرين 118 عنصر جي سڃاڻپ ٿي وئي، جئين ته غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو. ان ڪري جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] craofapq2ls262hxb770bes4sn79pw5 322514 322513 2025-07-10T19:22:34Z Ibne maryam 17680 322514 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪا دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] fzlycrid3geghompblysaagicyjeod5 322515 322514 2025-07-10T19:27:32Z Ibne maryam 17680 322515 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار تقريبن مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي (vertical) افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوراني جدول کي خاص ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ ساڄي کان کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] ahg8lf1e94qb41u5eidwqsalrcfgd8k 322516 322515 2025-07-10T19:32:53Z Ibne maryam 17680 322516 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي هيٺان کاٻي کان مٿي ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 8npjd4kdtbf13xwt9ec71uy92y649ib 322517 322516 2025-07-10T19:37:03Z Ibne maryam 17680 322517 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == تفصيل == 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] j0x65ff6872b8x09ld07mhunh9o3t1n 322518 322517 2025-07-10T19:37:59Z Ibne maryam 17680 322518 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 35sp69hvsofnf2xxceo0akswf49kvx1 322519 322518 2025-07-10T19:38:48Z Ibne maryam 17680 322519 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي ان جي وضاحت 20هين صدي جي شروع ۾ ٿي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. سال 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو، جيڪو اڪٽينائيڊ کي d-بلاڪ عنصرن سان ڌار ڪري، f-بلاڪ ۾ رکيو. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 0azsvwahzwi4k9nx9dm8pyjmiyzaytr 322520 322519 2025-07-10T19:46:25Z Ibne maryam 17680 322520 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==خاڪو== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 58tuk8be4dretylw4njcimxbovbqsrm 322521 322520 2025-07-10T19:47:28Z Ibne maryam 17680 322521 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==خاڪو== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == جوڙجڪ == == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] p79qfm2md2ymy5gfc65jd47b8dt4my7 322522 322521 2025-07-10T19:47:51Z Ibne maryam 17680 /* جوڙجڪ */ 322522 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==خاڪو== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] == تبديليون == periodic law was recognized as a fundamental discovery in the late 19th century. It was explained early in the 20th century, with the discovery of [[atomic number]]s and associated pioneering work in [[quantum mechanics]], both ideas serving to illuminate the internal structure of the atom. A recognisably modern form of the table was reached in 1945 with [[Glenn T. Seaborg]]'s discovery that the [[actinide]]s were in fact f-block rather than d-block elements. The periodic table and law are now a central and indispensable part of modern chemistry. The periodic table continues to evolve with the progress of science. In nature, only elements up to atomic number 94 <!--THIS IS NOT A TYPO: uranium can fission spontaneously, and when the resulting neutrons strike other uranium atoms in the ore, they can be captured, and the subsequent beta decay produces tiny traces of neptunium and plutonium. See the note--> exist; to go further, it was necessary to [[synthetic element|synthesize]] new elements in the laboratory. By 2010,<!--THE LAST FOUR WERE *NAMED* IN 2016, BUT ALL WERE ALREADY SYNTHESISED BY 2010--> the first 118 elements were known, thereby completing the first seven rows of the table;<ref>{{Cite web |title=Periodic Table of Elements |url=https://iupac.org/what-we-do/periodic-table-of-elements/ |access-date=11 May 2024 |website=IUPAC {{!}} International Union of Pure and Applied Chemistry |language=en-US}}</ref> however, chemical characterization is still needed for the heaviest elements to confirm that their properties match their positions. New discoveries will extend the table [[extended periodic table|beyond these seven rows]], though it is not yet known how many more elements are possible; moreover, theoretical calculations suggest that this unknown region will not follow the patterns of the known part of the table. Some scientific discussion also continues regarding whether some elements are correctly positioned in today's table. Many [[alternative periodic tables|alternative representations]] of the periodic law exist, and there is some discussion as to whether there is an optimal form of the periodic table. ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] git3l9fapud0bkiv80iygkfjduqw53e 322523 322522 2025-07-10T19:48:13Z Ibne maryam 17680 322523 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==خاڪو== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 6xyvksbqcqh9v459khyxfr1ydl6gdmq 322524 322523 2025-07-10T19:55:11Z Ibne maryam 17680 322524 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> === Group names and numbers === Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} === Electron configurations === {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] dp7259hgplaenqj8y6jqgqnkbojsm29 322526 322524 2025-07-10T20:02:34Z Ibne maryam 17680 322526 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙ جڪ== ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} === Electron configurations === {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] liiqzjic324e16f6mtxxaqlnvdm8i9g 322527 322526 2025-07-10T20:03:04Z Ibne maryam 17680 322527 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} === Electron configurations === {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 6t0gbrf5gx6a4nynym0ur83a3bp71ur 322528 322527 2025-07-10T20:05:46Z Ibne maryam 17680 322528 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا ۽ نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ==مختلف شڪلون== === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} === Electron configurations === {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 3qcxlixvoe2lv1hendi3ab4isosznjw 322529 322528 2025-07-10T20:11:03Z Ibne maryam 17680 322529 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا ۽ نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ==مختلف شڪلون== === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==اليڪٽراني تشڪيل== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] s8s501iup9ugn24z88lrtkesfe94bj9 322530 322529 2025-07-10T20:45:39Z Ibne maryam 17680 322530 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا ۽ نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ==مختلف شڪلون== === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==اليڪٽراني تشڪيل== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوروي رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] csysnalslgo8nfo17isb4wzwg7wmsm8 322531 322530 2025-07-10T20:46:08Z Ibne maryam 17680 /* دوري رجحان */ 322531 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا ۽ نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ==مختلف شڪلون== === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==اليڪٽراني تشڪيل== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 52fsuug5t2lwdz6e084mgursckjo03w 322533 322531 2025-07-11T04:19:14Z Ibne maryam 17680 322533 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} ==تاريخ== [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ==قسمون== In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا ۽ نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ==مختلف شڪلون== === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==اليڪٽراني تشڪيل== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 96ynjx9wz25b5btstm6i51g5r8j1xgn 322534 322533 2025-07-11T04:23:28Z Ibne maryam 17680 322534 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} ==جوڙجڪ== [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ==قسمون== In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا ۽ نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==اليڪٽراني تشڪيل== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] og0jtnnwc4as1296g2nfuhjicb1enkq 322535 322534 2025-07-11T04:25:56Z Ibne maryam 17680 322535 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} ==جوڙجڪ== [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ==قسمون== In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا ۽ نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==اليڪٽراني تشڪيل== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] === Presentation forms<span class="anchor" id="The long- or 32-column table"></span> === <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 76aqxf1n2j4mp9gugqvy269w5t84ix5 322537 322535 2025-07-11T04:29:50Z Ibne maryam 17680 322537 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} ==جوڙجڪ== [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ==قسمون== In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ==گروپن جا نالا ۽ نمبر== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==اليڪٽراني تشڪيل== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ==== Order of subshell filling ==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] For reasons of space,[30][31] the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.[32][30][23] This reduces the number of element columns from 32 to 18.[30] Both forms represent the same periodic table.[6] The form with the f-block included in the main body is sometimes called the 32-column[6] or long form;[33] the form with the f-block cut out the 18-column[6] or medium-long form.[33] The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.[34] The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing the composition of group 3, the options can be shown equally (unprejudiced) in both forms.[35] Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and standard atomic weights. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.[e] == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 5jibe7a0rqvsr00ksoy2k7gp3l25iw9 322539 322537 2025-07-11T04:41:49Z Ibne maryam 17680 322539 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===قسمون=== In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==جوڙجڪ== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] For reasons of space,[30][31] the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.[32][30][23] This reduces the number of element columns from 32 to 18.[30] Both forms represent the same periodic table.[6] The form with the f-block included in the main body is sometimes called the 32-column[6] or long form;[33] the form with the f-block cut out the 18-column[6] or medium-long form.[33] The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.[34] The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing the composition of group 3, the options can be shown equally (unprejudiced) in both forms.[35] Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and standard atomic weights. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.[e] == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] hcbr9vor1b20qj22ht3qy3qp5qiaju0 322540 322539 2025-07-11T04:44:12Z Ibne maryam 17680 /* پريزينٽيشن جو قسمون */ 322540 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===قسمون=== In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن جو قسمون=== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] For reasons of space,[30][31] the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.[32][30][23] This reduces the number of element columns from 32 to 18.[30] Both forms represent the same periodic table.[6] The form with the f-block included in the main body is sometimes called the 32-column[6] or long form;[33] the form with the f-block cut out the 18-column[6] or medium-long form.[33] The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.[34] The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing the composition of group 3, the options can be shown equally (unprejudiced) in both forms.[35] Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and standard atomic weights. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.[e] == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] csr9v5zlvg2chj5l6vuuzw21lzvznkr 322541 322540 2025-07-11T04:49:04Z Ibne maryam 17680 322541 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===پريزينٽيشن جون قسمون=== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] For reasons of space,[30][31] the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.[32][30][23] This reduces the number of element columns from 32 to 18.[30] In the standard periodic table, the elements are listed in order of increasing atomic number. A new row ([[Period (periodic table)|''period'']]) is started when a new [[electron shell]] has its first [[electron]]. Columns ([[Group (periodic table)|''groups'']]) are determined by the [[electron configuration]] of the atom; elements with the same number of electrons in a particular subshell fall into the same columns (e.g. [[oxygen]], [[sulfur]], and [[selenium]] are in the same column because they all have four electrons in the outermost p-subshell). Elements with similar chemical properties generally fall into the same group in the periodic table, although in the f-block, and to some respect in the d-block, the elements in the same period tend to have similar properties, as well. Thus, it is relatively easy to predict the chemical properties of an element if one knows the properties of the elements around it.<ref>Gray, p. 6</ref> Today, 118 elements are known, the first 94 of which are known to occur naturally on Earth at present.<ref name=ThorntonBurdette/>{{efn|The question of how many natural elements there are is quite complicated and is not fully resolved. The heaviest element that occurs in large quantities on Earth is element 92, [[uranium]]. However, uranium can undergo [[spontaneous fission]] in nature, and the resulting neutrons can strike other uranium atoms. If neutron capture then occurs, elements 93 and 94, [[neptunium]] and [[plutonium]], are formed via [[beta decay]];<ref name=ThorntonBurdette/> these are in fact more common than some of the rarest elements in the first 92, such as [[promethium]], [[astatine]], and [[francium]] (see [[Abundance of elements in Earth's crust]]). Theoretically, neutron capture on the resulting plutonium might produce even higher-numbered elements, but the quantities would be too small to be observed.<ref name=ThorntonBurdette/> In the early Solar System, shorter-lived elements had not yet decayed away, and consequently there were more than 94 naturally occurring elements. [[Curium]] (element 96) is the longest-lived element beyond the first 94, and is probably still being brought to Earth via [[cosmic ray]]s, but it has not been found.<ref name=ThorntonBurdette>{{cite journal |last1=Thornton |first1=Brett F. |last2=Burdette |first2=Shawn C. |date=2019 |title=Neutron stardust and the elements of Earth |url=https://www.nature.com/articles/s41557-018-0190-9 |journal=Nature Chemistry |volume=11 |issue=1 |pages=4–10 |doi=10.1038/s41557-018-0190-9 |pmid=30552435 |bibcode=2019NatCh..11....4T |s2cid=54632815 |access-date=19 February 2022 |archive-date=14 August 2021 |archive-url=https://web.archive.org/web/20210814111535/https://www.nature.com/articles/s41557-018-0190-9 |url-status=live |url-access=subscription }}</ref> Elements up to 99 ([[einsteinium]]) have been observed in [[Przybylski's Star]].<ref name=gopka08>{{cite journal |last1=Gopka |first1=V.F. |last2=Yushchenko |first2=A.V. |last3=Yushchenko |first3=V.A. |last4=Panov |first4=I.V. |last5=Kim |first5=Ch. |date=15 May 2008 |title=Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065) |journal=Kinematics and Physics of Celestial Bodies |volume=24 |issue=2 |pages=89–98 |doi=10.3103/S0884591308020049 |bibcode = 2008KPCB...24...89G |s2cid=120526363 }}</ref> Elements up to 100 ([[fermium]]) probably occurred in the [[natural nuclear fission reactor]] at [[Oklo Mine]], [[Gabon]], but they have long since decayed away.<ref name="emsley">{{cite book |last=Emsley |first=John |date=2011 |title=Nature's Building Blocks: An A-Z guide to the elements |edition=New |publisher=Oxford University Press |location=New York, NY |isbn=978-0-19-960563-7}}</ref> Even heavier elements may be produced in the [[r-process]] via [[supernova]]e or [[neutron star merger]]s, but this has not been confirmed. It is not clear how far they would extend past 100 and how long they would last: calculations suggest that nuclides of mass number around 280 to 290 are formed in the r-process, but quickly [[beta decay]] to nuclides that suffer [[spontaneous fission]], so that 99.9% of the produced [[superheavy element|superheavy]] nuclides would decay within a month.<ref>{{cite journal |last1=Panov |first1=I.V. |date=2017 |title=Formation of Superheavy Elements in Nature |journal=Physics of Atomic Nuclei |volume=81 |issue=1 |pages=57–65 |doi=10.1134/S1063778818010167|s2cid=125149409 }}</ref> If instead they were sufficiently long-lived, they might similarly be brought to Earth via cosmic rays, but again none have been found.<ref name=ThorntonBurdette/>|name=transuranium}} The remaining 24, americium to oganesson (95–118), occur only when synthesized in laboratories. Of the 94 naturally occurring elements, 83 are [[primordial element|primordial]] and 11 occur only in decay chains of primordial elements. A few of the latter are so rare that they were not discovered in nature, but were synthesized in the laboratory before it was determined that they do exist in nature after all: [[technetium]] (element 43), [[promethium]] (element 61), [[astatine]] (element 85), [[neptunium]] (element 93), and [[plutonium]] (element 94).<ref name="emsley"/> No element heavier than [[einsteinium]] (element 99) has ever been observed in macroscopic quantities in its pure form, nor has [[astatine]]; [[francium]] (element 87) has been only photographed in the form of [[light]] emitted from microscopic quantities (300,000 atoms).<ref>{{cite book| title = The Chemistry of the Actinide and Transactinide Elements| editor1-last = Morss| editor1-first=L. R.|editor2-first = N. M.|editor2-last = Edelstein| editor3-last = Fuger|editor3-first = J.| last = Silva|first = Robert J.| chapter = Fermium, Mendelevium, Nobelium and Lawrencium| publisher = [[Springer Science+Business Media]]| year = 2006| isbn = 978-1-4020-3555-5| location = Dordrecht| edition = 3rd| ref = CITEREFHaire2006}}</ref> Of the 94 natural elements, eighty have a stable isotope and one more ([[bismuth]]) has an almost-stable isotope (with a [[half-life]] of 2.01×10<sup>19</sup>&nbsp;years, over a billion times the [[age of the universe]]).<ref name=Bi209alpha2>{{cite journal | last = Marcillac | first = Pierre de |author2=Noël Coron |author3=Gérard Dambier |author4=Jacques Leblanc |author5=Jean-Pierre Moalic |date=April 2003 | title = Experimental detection of α-particles from the radioactive decay of natural bismuth | journal = Nature | volume = 422 | pages = 876–878 | doi = 10.1038/nature01541 | pmid = 12712201 | issue = 6934 | bibcode=2003Natur.422..876D| s2cid = 4415582 }}</ref>{{efn|Some isotopes currently considered stable are theoretically expected to be radioactive with extremely long half-lives: for instance, all the stable isotopes of elements 62 ([[samarium]]), 63 ([[europium]]), and all elements from 67 ([[holmium]]) onward are expected to undergo [[alpha decay]] or [[double beta decay]]. However, the predicted half-lives are extremely long (e.g. the alpha decay of <sup>208</sup>Pb to the ground state of <sup>204</sup>Hg is expected to have a half-life greater than 10<sup>120</sup> years), and the decays have never been observed.<ref name="bellidecay">{{cite journal |last1=Belli |first1=P. |last2=Bernabei |first2=R. |last3=Danevich |first3=F. A. |last4=Incicchitti |first4=A. |last5=Tretyak |first5=V. I. |display-authors=3 |title=Experimental searches for rare alpha and beta decays |journal=European Physical Journal A |date=2019 |volume=55 |issue=8 |pages=140–1–140–7 |doi=10.1140/epja/i2019-12823-2 |issn=1434-601X |arxiv=1908.11458|bibcode=2019EPJA...55..140B |s2cid=201664098 }}</ref><ref name="Tretyak2002">{{Cite journal |last1=Tretyak |first1=V.I. |last2=Zdesenko |first2=Yu.G. |year=2002 |title=Tables of Double Beta Decay Data — An Update |journal=[[At. Data Nucl. Data Tables]] |volume=80 |issue=1 |pages=83–116 |doi=10.1006/adnd.2001.0873 |bibcode=2002ADNDT..80...83T }}</ref>}} Two more, [[thorium]] and [[uranium]], have isotopes undergoing [[radioactive decay]] with a half-life comparable to the [[age of the Earth]]. The stable elements plus bismuth, thorium, and uranium make up the 83 [[primordial nuclide|primordial]] elements that survived from the Earth's formation.{{efn|The half-life of [[plutonium]]'s most stable isotope is just long enough that it should also be a primordial element. A 1971 study claimed to have detected primordial plutonium,<ref name="PU244">{{cite journal |first1=D. C. |last1=Hoffman |first2=F. O. |last2=Lawrence |first3=J. L. |last3=Mewherter |first4=F. M. |last4=Rourke |title=Detection of Plutonium-244 in Nature |journal=[[Nature (journal)|Nature]] |volume=234 |pages= 132–134 |year=1971 |doi=10.1038/234132a0|bibcode = 1971Natur.234..132H |issue=5325|s2cid=4283169 }}</ref> but a more recent study from 2012 could not detect it.<ref name="PRC">{{cite journal|last=Lachner|first=J.|display-authors=etal|date=2012|title=Attempt to detect primordial <sup>244</sup>Pu on Earth|journal=Physical Review C|volume=85|issue=1|page=015801| doi=10.1103/PhysRevC.85.015801|bibcode=2012PhRvC..85a5801L}}</ref> Based on its likely initial abundance in the Solar System, present experiments as of 2022 are likely about an order of magnitude away from detecting live primordial <sup>244</sup>Pu.<ref>{{cite journal |last1=Wu |first1=Yang |last2=Dai |first2=Xiongxin |first3=Shan |last3=Xing |first4=Maoyi |last4=Luo |first5=Marcus |last5=Christl |first6=Hans-Arno |last6=Synal |first7=Shaochun |last7=Hou |date=2022 |title=Direct search for primordial <sup>244</sup>Pu in Bayan Obo bastnaesite |url=http://www.ccspublishing.org.cn/article/doi/10.1016/j.cclet.2022.03.036?pageType=en |journal=Chinese Chemical Letters |volume=33 |issue=7 |pages=3522–3526 |doi=10.1016/j.cclet.2022.03.036 |s2cid=247443809 |access-date=29 January 2024|url-access=subscription }}</ref>}} The remaining eleven natural elements decay quickly enough that their continued trace occurrence rests primarily on being constantly regenerated as intermediate products of the decay of thorium and uranium.{{efn|Tiny traces of plutonium are also continually brought to Earth via cosmic rays.<ref name="WallnerFaestermann2015">{{cite journal |last1=Wallner |first1=A. |last2=Faestermann |first2=T. |last3=Feige |first3=J. |last4=Feldstein |first4=C. |last5=Knie |first5=K. |last6=Korschinek |first6=G. |last7=Kutschera |first7=W. |last8=Ofan |first8=A. |last9=Paul |first9=M. |last10=Quinto |first10=F. |last11=Rugel |first11=G. |last12=Steier |first12=P. |display-authors=6 |year=2015 |title=Abundance of live {{sup|244}}Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis |journal=Nature Communications |volume=6 |page=5956 |issn=2041-1723|doi=10.1038/ncomms6956|pmid=25601158 |pmc=4309418 |arxiv=1509.08054|bibcode=2015NatCo...6.5956W}}</ref>}} All 24 known artificial elements are radioactive.<ref name="IUPAC-redbook" /> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن جو قسمون=== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] For reasons of space,[30][31] the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.[32][30][23] This reduces the number of element columns from 32 to 18.[30] Both forms represent the same periodic table.[6] The form with the f-block included in the main body is sometimes called the 32-column[6] or long form;[33] the form with the f-block cut out the 18-column[6] or medium-long form.[33] The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.[34] The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing the composition of group 3, the options can be shown equally (unprejudiced) in both forms.[35] Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and standard atomic weights. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.[e] == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] i6d9tufadlzdedj2rxm0jzvm2suv6iw 322542 322541 2025-07-11T04:49:40Z Ibne maryam 17680 322542 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن جو قسمون=== [[فائل:Simple Periodic Table Chart-en.svg|frameless|upright=1.5|left]] For reasons of space,[30][31] the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.[32][30][23] This reduces the number of element columns from 32 to 18.[30] Both forms represent the same periodic table.[6] The form with the f-block included in the main body is sometimes called the 32-column[6] or long form;[33] the form with the f-block cut out the 18-column[6] or medium-long form.[33] The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.[34] The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing the composition of group 3, the options can be shown equally (unprejudiced) in both forms.[35] Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and standard atomic weights. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.[e] == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] f5lx4ndgvbwodv0i2ojot8wfhbrlv7w 322543 322542 2025-07-11T04:51:12Z Ibne maryam 17680 322543 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. == Presentation forms<span class="anchor" id="The long- or 32-column table"></span> == <div style="border:1px solid grey; float:right; text-align:center; padding:0.2em; margin:0; font-size:90%;"> {{Periodic table (32 columns, micro)}} 32 columns {{Periodic table (18 columns, micro)}} 18 columns </div> For reasons of space,<ref name=Petrucci331/><ref>{{cite journal |last1=Pfeiffer |first1=Paul |date=1920 |title=Die Befruchtung der Chemie durch die Röntgenstrahlenphysik |url=https://link.springer.com/article/10.1007/BF02448807 |journal=Naturwissenschaften |language=de |volume=8 |issue=50 |pages=984–991 |bibcode=1920NW......8..984P |doi=10.1007/BF02448807 |s2cid=7071495}}</ref> the periodic table is commonly presented with the f-block elements cut out and positioned as a distinct part below the main body.<ref name="cartoon" /><ref name="Petrucci331" /><ref name="Fluck" /> This reduces the number of element columns from 32 to 18.<ref name=Petrucci331/> Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] n1mr0tx6odkhb9xar2s1cyccrik4oiu 322544 322543 2025-07-11T04:57:05Z Ibne maryam 17680 322544 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ==پريزينٽيشن== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] lmhteovhownc6clyv9g8evx7fblktab 322545 322544 2025-07-11T04:57:55Z Ibne maryam 17680 322545 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 7cym2qi6b2uh05wm6kmd0tzsqlyk8tp 322546 322545 2025-07-11T05:39:51Z Ibne maryam 17680 322546 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} نوٽ: * 1. رنگ: شروع کان (ابتدائي)   2. رنگ: زوال کان (زوال جي پيداوار) 3. رنگ: مصنوعي (مصنوعي طور تي ليبارٽري ۾ پيدا ڪيل)   * بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي. * معياري ايٽمي وزن 1. ارگن (Ar): 2. ڪيلشيم(Ca): 40.078 3. 3 پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر 1. رنگ: s-بلاڪ 2. رنگ: p-بلاڪ 3. رنگ: d-بلاڪ 4. رنگ: f-بلاڪ [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal |last=Labarca |first=M. |title=An element of atomic number zero? |journal=New Journal of Chemistry |year=2016 |volume=40|issue=11|pages=9002–9006 |doi=10.1039/C6NJ02076C|hdl=11336/46854 |hdl-access=free |issn=1144-0546 }}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] fu6e0nnoqo1rdkv21rsox9tj9u6jimh 322547 322546 2025-07-11T05:42:25Z Ibne maryam 17680 322547 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table|state=دوري جدول}} نوٽ: * 1. رنگ: شروع کان (ابتدائي)   2. رنگ: زوال کان (زوال جي پيداوار) 3. رنگ: مصنوعي (مصنوعي طور تي ليبارٽري ۾ پيدا ڪيل)   * بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي. * معياري ايٽمي وزن 1. ارگن (Ar): 2. ڪيلشيم(Ca): 40.078 3. 3 پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر 1. رنگ: s-بلاڪ 2. رنگ: p-بلاڪ 3. رنگ: d-بلاڪ 4. رنگ: f-بلاڪ [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] pv8lksdd6rhzg6hhjsk5pga27oco2p5 322552 322547 2025-07-11T05:56:46Z Ibne maryam 17680 322552 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table|state=دوري جدول}} نوٽ: _______ <nowiki><br></nowiki>_______ .............br........... --br-- 1. رنگ: شروع کان (ابتدائي) 2. رنگ: زوال کان (زوال جي پيداوار) 3. رنگ: مصنوعي (مصنوعي طور تي ليبارٽري ۾ پيدا ڪيل)   * بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي. * معياري ايٽمي وزن 1. ارگن (Ar): 1. ڪيلشيم(Ca): 40.078 3 2. پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر 1. رنگ ڳاڙهو: s-بلاڪ 2. رنگ پيلو: p-بلاڪ 3. رنگ نيرو : d-بلاڪ 4. رنگ سائو: f-بلاڪ [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] okj182vbqh7or6zm6xnzo8558nsgj8f 322553 322552 2025-07-11T05:58:45Z Ibne maryam 17680 322553 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} نوٽ: _______ <nowiki><br></nowiki>_______ .............br........... --br-- 1. رنگ: شروع کان (ابتدائي) 2. رنگ: زوال کان (زوال جي پيداوار) 3. رنگ: مصنوعي (مصنوعي طور تي ليبارٽري ۾ پيدا ڪيل)   * بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي. * معياري ايٽمي وزن 1. ارگن (Ar): 1. ڪيلشيم(Ca): 40.078 3 2. پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر 1. رنگ ڳاڙهو: s-بلاڪ 2. رنگ پيلو: p-بلاڪ 3. رنگ نيرو : d-بلاڪ 4. رنگ سائو: f-بلاڪ [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 3br80zns49088jucait948aty35pnzp 322554 322553 2025-07-11T06:15:09Z Ibne maryam 17680 322554 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} نوٽ: * بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي. *_________<br>شروع کان__________<br> *...........<br>زوال کان..........<br> *-----------<br>مصنوعي----------- 1. شروع کان (ابتدائي) 2. زوال کان (زوال جي پيداوار) 3. مصنوعي (مصنوعي طور تي ليبارٽري ۾ پيدا ڪيل)   * بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي. * معياري ايٽمي وزن: (A r) # ڪيلشيم (Ca): 40.078 3 a.m.u # پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر (A) [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase (g orbitals and higher are not shown)]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> * ڳاڙهو: s-بلاڪ * نيرو : d-بلاڪ * سائو: f-بلاڪ * پيلو: p-بلاڪ ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] j57ph2kx14hkb20k2ynd964y6zt7mk7 322555 322554 2025-07-11T06:34:14Z Ibne maryam 17680 322555 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} نوٽ: * بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي. *___________ *<small>شروع کان</small> <small>(ابتدائي)</small> *___________ *................... *<small>زوال جي پيداوار</small> *..................<br> *---------------- *<small>مصنوعي</small> <small>طورڱ</small> *---------------- * '''معياري ايٽمي وزن: (A <sub>r</sub>)''' # ڪيلشيم (Ca): 40.078 3 a.m.u # پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر (A) # ذيلي مدار [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase.]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 1rqhruhvxbtwwldjrspdqxrladp248m 322556 322555 2025-07-11T06:39:44Z Ibne maryam 17680 322556 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} '''نوٽ''': * <small>بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي.</small> *<small>________________</small> *<small>شروع کان</small> <small>(ابتدائي)</small> *<small><sup>_____________________</sup></small> *<small><sub>....................................</sub></small> *<small>زوال جي پيداوار</small> *<small><sup>...................................</sup><br></small> *<small><sub>--------------------------------</sub></small> *<small>مصنوعي</small> <small>طور</small> *<small><sup>------------------------------</sup></small> * '''معياري ايٽمي وزن: (A <sub>r</sub>)''' # ڪيلشيم (Ca): 40.078 3 a.m.u # پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر (A) # ذيلي مدار [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase.]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] mut0iivcb2xgj6e8fsc6yl5im2nfiyt 322557 322556 2025-07-11T06:50:54Z Ibne maryam 17680 322557 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} '''نوٽ''': <small>بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي.</small> <br><small>________________</small> <br><small>شروع کان</small> <br><small>(ابتدائي)</small> <br><small><sup>_____________________</sup></small><br><small><sub>....................................</sub></small><br><small>زوال جي پيداوار</small> <br><small><sup>..................................</sup></small><br> *<small><sub>--------------------------------</sub><br></small><small>مصنوعي</small> <small>طور</small><br><br><small><sup> ------------------------------</sup></small><br>'''معياري ايٽمي وزن: (A <sub>r</sub>)'''<br>ڪيلشيم (Ca): 40.078 3 a.m.u<br>پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر (A) * ذيلي مدار [[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|3D views of some [[Hydrogen-like atom|hydrogen-like]] [[atomic orbital]]s showing probability density and phase.]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook"/> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 99n7m9y5f6s0rwkfqwco1it3gwwcss2 322558 322557 2025-07-11T07:06:45Z Ibne maryam 17680 322558 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} '''نوٽ''': <small>بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي.</small> <small>_________________</small><br>'''<small>شروع کان (</small><small>ابتدائي)</small>'''<br><small><sup>'''______________________'''</sup></small><br><small><sub>...............................</sub></small><br><small>'''زوال جي پيداوار'''</small> <br><small><sup>'''.............................'''</sup></small><br><small><sub>------------------------</sub><br></small>'''<small>مصنوعي</small> <small>طور</small>''' <small><sup>--------------------------</sup></small> ------------------------------'''معياري ايٽمي مايو (A<sub>r</sub>):'''</small><small><sup>'''* ڪيلشيم (Ca): 40.078 3 a.m.u<br>* پولونيم (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر (A)'''</sup></small> '''ذيلي مدار:'''[[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|هائڊروجن جي ايٽمي مدارن جيهڙي ڪجهه مدارن جو 3D ڏيک]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook" /> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] 68o5jtwubczdbuye8kr5cubdyxq5fk5 322559 322558 2025-07-11T07:37:50Z Ibne maryam 17680 322559 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} '''نوٽ''': <small>بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي.</small> <small>_________________</small><br>'''<small>شروع کان (</small><small>ابتدائي)</small>'''<br><small><sup>'''______________________'''</sup></small><br><small><sub>...............................</sub></small><br><small>'''زوال جي پيداوار'''</small> <br><small><sup>'''.............................'''</sup></small><br><small><sub>------------------------</sub><br></small>'''<small>مصنوعي</small> <small>طور</small>''' <small><sup>--------------------------</sup></small> ------------------------------'''[[معياري ايٽمي مايو|معياري ايٽمي مايو (A<sub>r</sub>)]]:''' <small><sup>'''* [[ڪيلشيئم|ڪيلشيم]] (Ca): 40.078 3 a.m.u<br>* [[پولونيئم|پولونيم]] (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر (A)'''</sup></small> هر ڪيميائي عنصر جو هڪ منفرد [[ايٽمي نمبر|ايٽمي نمبر "Z"]] (جرمن: Zahl، مطلب، انگ) هوندو آهي، جيڪو ان جي [[نيوڪليس|مرڪز (nucleus)]] [[پروٽان|پروٽانن]] جي تعداد جي نمائندگي ڪري ٿو. تنهن ڪري هر هڪ الڳ ايٽمي نمبر ايٽم جي هڪ طبقي سان ملندو آهي: انهن طبقن کي ڪيميائي عنصر سڏيو ويندو آهي. ڪيميائي عنصر اهي آهن جيڪي دوري جدول ۾ درجه بندي سان ترتيب ڏنل آهن. [[ھائڊروجن|هائيڊروجن]] اهو عنصر آهي جنهن جو ايٽمي نمبر "1" آهي؛ اھڙي طرح [[هيليئم|هيليم]] جو "2" ۽ [[ليٿيئم|لٿيم]] جو "3" آهي. انهن مان هر هڪ نالا هڪ يا ٻن اکرن واري ڪيميائي علامت سان وڌيڪ مختصر ڪري سگهجي ٿو؛ هائيڊروجن، هيليم ۽ ليٿيم لاءِ ترتيب وار H، He، ۽ Li آهن. [[نيوٽران]] ايٽم جي ڪيميائي سڃاڻپ کي متاثر نه ڪندا آهن، پر ان جي وزن کي متاثر ڪندا آهن. ايٽم جن ۾ پروٽانن جي تعداد ساڳي هوندي آهي، پر نيوٽران جي تعداد مختلف هوندي آهي، انهن کي هڪ ئي ڪيميائي عنصر جا [[آئسوٽوپ]] سڏيو ويندو آهي. قدرتي طور تي پيدا ٿيندڙ عنصر عام طور تي مختلف آئسوٽوپن جي ميلاپ جي طور تي موجود آهن؛ ڇاڪاڻ ته هر آئسوٽوپ عام طور تي هڪ خاصيت جي ڪثرت سان ٿئي ٿو، قدرتي طور تي پيدا ٿيندڙ عنصرن جا چڱي طرح بيان ڪيل [[ايٽمي مايو|ايٽمي وزن]] هوندا آهن، جيڪي ان عنصر جي قدرتي طور تي پيدا ٿيندڙ ايٽم جي سراسري ماين جي طور تي بيان ڪيا ويندا آهن. سڀني عنصرن ۾ ڪيترائي آئسوٽوپس هوندا آهن، مختلف قسمن ۾ پروٽانن جو تعداد ساڳيو هوندو آهي پر نيوٽرانن جو تعداد مختلف هوندو آهي. مثال طور، [[ڪاربان]] ۾ ٽي قدرتي طور تي پيدا ٿيندڙ آئسوٽوپس هوندا آهن: ان جي سڀني ايٽمن ۾ ڇهه پروٽان هوندا آهن ۽ لڳ ڀڳ ۾ ڇهه نيوٽران هوندا آهن، پر هڪ سيڪڙي ۾ ست ۽ هڪ تمام ننڍڙي حصي ۾ اٺ به هوندا آهن. آئسوٽوپس ڪڏهن به دوري جدول ۾ الڳ سان نه ڏيکاريا ويندا آهن؛ ۽ هميشه هڪ تت طور سراسري وزن سان ڏيکاريا ويندا آھن، اهي هميشه هڪ عنصر جي تحت گڏ ڪيا ويندا آهن، جهڙوڪ ڪاربان (C<small><sup>6</sup></small>)<sub>12.34</sub> '''ذيلي مدار:'''[[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|هائڊروجن جي ايٽمي مدارن جيهڙي ڪجهه مدارن جو 3D ڏيک]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook" /> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] lsf3a6duyhm1qh1jlm6m74ce7io3570 322560 322559 2025-07-11T07:39:47Z Ibne maryam 17680 322560 wikitext text/x-wiki {{Short description|Tabular arrangement of the chemical elements ordered by atomic number}} {{About|the table used in chemistry and physics|other uses|Periodic table (disambiguation)}} {{Featured article}} [[File:Colour 18-col PT with labels.png|thumb|upright=2.2|ڪيميائي عنصرن جي دوري جدول جيڪي دوري جدولن ۾، ڪيميائي تتن جو سڀ کان وڌيڪ قبول ٿيل ۽ عام طور تي نامزد ٿيل سيٽ آهي ۽ ڌاتو ۽ غير ڌاتو تتن جي وچ ۾ هڪ روايتي ورهائڻ واري لڪير ڏيکاري ٿي. ايف-بلاڪ اصل ۾ گروپ 2 ۽ 3 جي وچ ۾ فٽ ٿئي ٿو؛ اهو عام طور تي افقي جڳهه بچائڻ لاءِ ٽيبل جي پيرن تي ڏيکاريو ويندو آهي.]] '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ سڏيو ويندو آهي، [[ڪيميائي عنصر|ڪيميائي تتن]] کي قطارن، جنهن کي دور (periods) چئبو آهي ۽ ڪالمن، جنهن کي گروپ (groups) چئبو آهي، ۾ ڏيکاريل ترتيب آهي. اها [[علم ڪيميا]] جي هڪ آئڪن آهي ۽ [[طبيعيات]] ۽ ٻين سائنسن ۾ وڏي پيماني تي استعمال ٿيندي آهي. اها [[دوري قانون]] جي هڪ شڪل آهي، جيڪي بيان ڪري ٿي ته جڏهن عنصرن کي انهن جي [[ايٽمي نمبر|ايٽمي انگن]] جي ترتيب سان ترتيب ڏنو ويندو آهي، انهن جي خاصيتن جي ورهاست تقريبن واضح ٿي ويندي آهي. جدول کي چار مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي بلاڪ (block) سڏيو ويندو آهي. ساڳئي ڪالم يا گروپ جا عنصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عنصرن جا عمودي (vertical)، افقي (horizontal) ۽ ترچھا (diagonal) رجحان دوري جدول کي ممتاز ڪن ٿا. ڌاتو ڪردار وارا (metallic) تت هڪ گروپ هيٺ ۽ کاٻي کان ساڄي طرف هڪ دور ۾ وڌندا آهن. غير ڌاتو ڪردار وارا (non metallic) تت دوري جدول جي گروپ ۾ مٿيان کاٻي کان هيٺيان ساڄي طرف وڌندا آهن. پهرين دوري جدول، جن کي قبوليت ملي ۽ عام طور تي قبول ڪئي وئي آهي، اها 1869ع ۾ روسي [[ڪيميادان]]، [[ديمتري مينڊيليف]] جي آهي. هن جدول کي دوري قانون جي [[ايٽمي مايو]] (Atomic masses) تي ڪيميائي خاصيتن جي انحصار جي طور تي تيار ڪيو، جيئن ته ان وقت سڀئي ڪيميائي تت معلوم نه هئا، هن جي دوري جدول ۾ خال هئا ۽ مينڊيليف ڪاميابي سان دوري قانون کي استعمال ڪندي ڪجهه غائب عنصرن جي ڪجهه خاصيتن جي اڳڪٿي ڪئي. 19هين صدي جي آخر ۾ دوري قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو ۽ ان جي وضاحت 20هين صدي جي شروعات ۾ ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانيات، ٻئي ايٽم جي اندروني جوڙجڪ کي روشن ڪرڻ لاءِ ڪم ڪن ٿا، ۾ لاڳاپيل اڳڀرائي جي ڪم سان ڪئي وئي. جدول جي هڪ سڃاڻپ جديد شڪل، سال <small>'''1945'''</small>ع ۾ گلين ٽي. سيبورگ جي دريافت ته اڪٽينائيڊ حقيقت ۾ ڊي-بلاڪ (d-block) عنصرن جي بدران ايف-بلاڪ (f-block) جا عنصر آهن، سان مڪمل ٿي. دوري جدول ۽ دوري قانون هاڻي جديد علم ڪيميا جو هڪ مرڪزي ۽ لازمي حصو آهن. دوري جدول جو ارتقا، سائنس جي ترقي سان گڏ جاري آهي. فطرت ۾، صرف ايٽمي نمبر <small>'''94'''</small> تائين جا عنصر موجود آهن. اڳتي وڌڻ لاءِ، ليبارٽري ۾ نوان عنصر ترڪيب ڪرڻ ضروري آهي. سال <small>'''2010'''</small>ع تائين، پهرين <small>'''118'''</small> عنصر جي سڃاڻپ ٿي وئي، جڏهن غير موجود عنصرن کي ليبارٽري ۾ ترڪيب ڪيو ويو ۽ جدول جي پهريون ست قطارون (periods) مڪمل ٿي ويون، جڏهن ته، وڌيڪ ڳري عنصرن جي ڪيميائي خاصيتن جي تصديق ڪرڻ لاءِ، اڃا تائين ضرورت آهي، جئين ته انهن جون خاصيتون، دوري جدول ۾ انهن جي جاء سان ملنديون آهن. وڌيڪ ڳري عنصرن جي نيون دريافتون جدول کي انهن ستن قطارن کان اڳتي وڌائينديون. جئين ته اهو اڃا تائين معلوم ناهي ته ڪيترا وڌيڪ عنصر جو وجود ممڪن آهي، پر وڌيڪ، نظرياتي حساب اها اندازو ڏين ٿا ته عنصرن جو هي نامعلوم علائقو جدول جي ڄاتل سڃاتل حصي جي نمونن جي پيروي نه ڪندو. ڪجهه سائنسي بحث پڻ جاري آهي ته ڇا ڪجهه عنصر موجود جدول ۾ صحيح جاء تي آهن. دوري قانون جي ڪيتريون متبادل جدول موجود آهن ۽ بحث آهي ته ڇا موجود شڪل دوري جدول جي هڪ بهترين شڪل آهي. ==جوڙجڪ<span class="anchor" id="Detailed table"></span> == {{Periodic table}} '''نوٽ''': <small>بارڊر عنصر جي قدرتي موجودگي کي ڏيکاري ٿي.</small> <small>_________________</small><br>'''<small>شروع کان (</small><small>ابتدائي)</small>'''<br><small><sup>'''______________________'''</sup></small><br><small><sub>...............................</sub></small><br><small>'''زوال جي پيداوار'''</small> <br><small><sup>'''.............................'''</sup></small><br><small><sub>------------------------</sub><br></small>'''<small>مصنوعي</small> <small>طور</small>''' <small><sup>--------------------------</sup></small> ------------------------------'''[[معياري ايٽمي مايو|معياري ايٽمي مايو (A<sub>r</sub>)]]:''' <small><sup>'''* [[ڪيلشيئم|ڪيلشيم]] (Ca): 40.078 3 a.m.u<br>* [[پولونيئم|پولونيم]] (Po): [209] (سڀ کان وڌيڪ مستحڪم آئسوٽوپ جو ماس نمبر (A)'''</sup></small> هر ڪيميائي عنصر جو هڪ منفرد [[ايٽمي نمبر|ايٽمي نمبر "Z"]] (جرمن: Zahl، مطلب، انگ) هوندو آهي، جيڪو ان جي [[نيوڪليس|مرڪز (nucleus)]] [[پروٽان|پروٽانن]] جي تعداد جي نمائندگي ڪري ٿو. تنهن ڪري هر هڪ الڳ ايٽمي نمبر ايٽم جي هڪ طبقي سان ملندو آهي: انهن طبقن کي ڪيميائي عنصر سڏيو ويندو آهي. ڪيميائي عنصر اهي آهن جيڪي دوري جدول ۾ درجه بندي سان ترتيب ڏنل آهن. [[ھائڊروجن|هائيڊروجن]] اهو عنصر آهي جنهن جو ايٽمي نمبر "1" آهي؛ اھڙي طرح [[هيليئم|هيليم]] جو "2" ۽ [[ليٿيئم|لٿيم]] جو "3" آهي. انهن مان هر هڪ نالا هڪ يا ٻن اکرن واري ڪيميائي علامت سان وڌيڪ مختصر ڪري سگهجي ٿو؛ هائيڊروجن، هيليم ۽ ليٿيم لاءِ ترتيب وار H، He، ۽ Li آهن. [[نيوٽران]] ايٽم جي ڪيميائي سڃاڻپ کي متاثر نه ڪندا آهن، پر ان جي وزن کي متاثر ڪندا آهن. ايٽم جن ۾ پروٽانن جي تعداد ساڳي هوندي آهي، پر نيوٽران جي تعداد مختلف هوندي آهي، انهن کي هڪ ئي ڪيميائي عنصر جا [[آئسوٽوپ]] سڏيو ويندو آهي. قدرتي طور تي پيدا ٿيندڙ عنصر عام طور تي مختلف آئسوٽوپن جي ميلاپ جي طور تي موجود آهن؛ ڇاڪاڻ ته هر آئسوٽوپ عام طور تي هڪ خاصيت جي ڪثرت سان ٿئي ٿو، قدرتي طور تي پيدا ٿيندڙ عنصرن جا چڱي طرح بيان ڪيل [[ايٽمي مايو|ايٽمي وزن]] هوندا آهن، جيڪي ان عنصر جي قدرتي طور تي پيدا ٿيندڙ ايٽم جي سراسري ماين جي طور تي بيان ڪيا ويندا آهن. سڀني عنصرن ۾ ڪيترائي آئسوٽوپس هوندا آهن، مختلف قسمن ۾ پروٽانن جو تعداد ساڳيو هوندو آهي پر نيوٽرانن جو تعداد مختلف هوندو آهي. مثال طور، [[ڪاربان]] ۾ ٽي قدرتي طور تي پيدا ٿيندڙ آئسوٽوپس هوندا آهن: ان جي سڀني ايٽمن ۾ ڇهه پروٽان هوندا آهن ۽ لڳ ڀڳ ۾ ڇهه نيوٽران هوندا آهن، پر هڪ سيڪڙي ۾ ست ۽ هڪ تمام ننڍڙي حصي ۾ اٺ به هوندا آهن. آئسوٽوپس ڪڏهن به دوري جدول ۾ الڳ سان نه ڏيکاريا ويندا آهن؛ ۽ هميشه هڪ تت طور سراسري وزن سان ڏيکاريا ويندا آھن، اهي هميشه هڪ عنصر جي تحت گڏ ڪيا ويندا آهن، جهڙوڪ ڪاربان (C<small><sup>6</sup></small>)<sub>12.001</sub> '''ذيلي مدار:'''[[File:Atomic-orbital-clouds spdf m0.png|thumb|upright=1.5|هائڊروجن جي ايٽمي مدارن جيهڙي ڪجهه مدارن جو 3D ڏيک]] Each chemical element has a unique [[atomic number]] (''Z''{{--}} for "Zahl", German for "number") representing the number of [[proton]]s in its [[atomic nucleus|nucleus]].<ref name="neutronium">An [[Neutronium|element zero]] (i.e. a substance composed purely of neutrons), is included in a few alternate presentations, for example, in the [https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=22 Chemical Galaxy]. See {{cite journal|last=Labarca|first=M.|year=2016|title=An element of atomic number zero?|journal=New Journal of Chemistry|volume=40|issue=11|pages=9002–9006|doi=10.1039/C6NJ02076C|issn=1144-0546|hdl-access=free|hdl=11336/46854}}</ref> Each distinct atomic number therefore corresponds to a class of atom: these classes are called the [[chemical element]]s.<ref>{{GoldBookRef |title=Chemical element |file=C01022}}</ref> The chemical elements are what the periodic table classifies and organizes. [[Hydrogen]] is the element with atomic number 1; [[helium]], atomic number 2; [[lithium]], atomic number 3; and so on. Each of these names can be further abbreviated by a one- or two-letter [[chemical symbol]]; those for hydrogen, helium, and lithium are respectively H, He, and Li.<ref name="IUPAC-redbook" /> Neutrons do not affect the atom's chemical identity, but do affect its weight. Atoms with the same number of protons but different numbers of neutrons are called [[isotope]]s of the same chemical element.<ref name="IUPAC-redbook" /> Naturally occurring elements usually occur as mixes of different isotopes; since each isotope usually occurs with a characteristic abundance, naturally occurring elements have well-defined [[atomic weight]]s, defined as the average mass of a naturally occurring atom of that element.<ref name="ciaaw">{{cite web |title=Standard Atomic Weights |website=Commission on Isotopic Abundances and Atomic Weights |date=2019 |publisher=International Union of Pure and Applied Chemistry |url=https://www.ciaaw.org/atomic-weights.htm |access-date=7 February 2021 |url-status=live |archive-date=8 August 2020 |archive-url=https://web.archive.org/web/20200808155924/https://www.ciaaw.org/atomic-weights.htm}}</ref> All elements have multiple [[isotope]]s, variants with the same number of protons but different numbers of [[neutron]]s. For example, [[carbon]] has three naturally occurring isotopes: all of its [[atom]]s have six protons and most have six neutrons as well, but about one per cent have seven neutrons, and a very small fraction have eight neutrons. Isotopes are never separated in the periodic table; they are always grouped together under a single element. When atomic mass is shown, it is usually the weighted average of naturally occurring isotopes; but if no isotopes occur naturally in significant quantities, the mass of the most stable isotope usually appears, often in parentheses.<ref name="Greenwood">Greenwood & Earnshaw, pp. 24–27</ref> ===گروپن جا نالا ۽ نمبر=== Under an international naming convention, the groups are numbered numerically from 1 to 18 from the leftmost column (the alkali metals) to the rightmost column (the noble gases). The f-block groups are ignored in this numbering.<ref name="IUPAC">{{cite book|title=Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005|last1=Connelly|first1=N. G.|last2=Damhus|first2=T.|last3=Hartshorn|first3=R. M.|last4=Hutton|first4=A. T.|year=2005|publisher=RSC Publishing|isbn=978-0-85404-438-2|page=51|url=https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|access-date=26 November 2018|archive-url=https://web.archive.org/web/20181123034019/https://old.iupac.org/publications/books/rbook/Red_Book_2005.pdf|archive-date=23 November 2018|url-status=live}}</ref> Groups can also be named by their first element, e.g. the "scandium group" for group 3.<ref name="IUPAC"/> Previously, groups were known by [[Roman numerals]]. In the United States, the Roman numerals were followed by either an "A" if the group was in the [[s-block|s-]] or [[p-block]], or a "B" if the group was in the [[d-block]]. The Roman numerals used correspond to the last digit of today's naming convention (e.g. the [[group 4 element]]s were group IVB, and the [[Carbon group|group 14 elements]] were group IVA). In Europe, the lettering was similar, except that "A" was used for groups 1 through 7, and "B" was used for groups 11 through 17. In addition, groups 8, 9 and 10 used to be treated as one triple-sized group, known collectively in both notations as group VIII. In 1988, the new [[IUPAC]] (International Union of Pure and Applied Chemistry) naming system (1–18) was put into use, and the old group names (I–VIII) were deprecated.<ref name="Fluck">{{cite journal |last1=Fluck |first1=E. |year=1988 |title=New Notations in the Periodic Table |journal=[[Pure and Applied Chemistry|Pure Appl. Chem.]] |volume=60 |pages=431–436|doi=10.1351/pac198860030431 |url=https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |access-date=24 March 2012 |issue=3 |s2cid=96704008 |url-status=live |archive-url=https://web.archive.org/web/20120325152951/https://www.iupac.org/publications/pac/1988/pdf/6003x0431.pdf |archive-date=25 March 2012}}</ref> {{Periodic table (group names)}} ===پريزنٽيشن جون قسمون=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ===اليڪٽراني تشڪيل=== {{main|Electron configuration}} The periodic table is a graphic description of the periodic law,<ref name="Scerri17"/> which states that the properties and atomic structures of the chemical elements are a [[periodic function]] of their [[atomic number]].<ref>{{cite Merriam-Webster |periodic law |access-date=29 March 2021}}</ref> Elements are placed in the periodic table according to their [[electron configuration]]s,<ref name="Jensen2009"/> the periodic recurrences of which explain the [[periodic trends|trends]] in properties across the periodic table.<ref name="FIII19" /> An electron can be thought of as inhabiting an [[atomic orbital]], which characterizes the probability it can be found in any particular region around the atom. Their energies are [[quantization (physics)|quantised]], which is to say that they can only take discrete values. Furthermore, electrons obey the [[Pauli exclusion principle]]: different electrons must always be in different states. This allows classification of the possible states an electron can take in various energy levels known as shells, divided into individual subshells, which each contain one or more orbitals. Each orbital can contain up to two electrons: they are distinguished by a quantity known as [[Spin (physics)|spin]], conventionally labelled "up" or "down".<ref>Petrucci et al., p. 323</ref>{{efn|Strictly speaking, one cannot draw an orbital such that the electron is guaranteed to be inside it, but it can be drawn to guarantee a 90% probability of this for example.<ref>Petrucci et al., p. 306</ref>}} In a cold atom (one in its ground state), electrons arrange themselves in such a way that the total energy they have is minimized by occupying the lowest-energy orbitals available.<ref>Petrucci et al., p. 322</ref> Only the outermost electrons (so-called [[valence electron]]s) have enough energy to break free of the nucleus and participate in chemical reactions with other atoms. The others are called [[core electron]]s.<ref>{{cite book |last1=Ball |first1=David W. |last2=Key |first2=Jessie A. |date=2011 |title=Introductory Chemistry |edition=1st Canadian |place=Vancouver, British Columbia |publisher=BC Campus (opentextbc.ca) |isbn=978-1-77420-003-2 |url=https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |access-date=15 August 2021 |archive-date=15 August 2021 |archive-url=https://web.archive.org/web/20210815072718/https://opentextbc.ca/introductorychemistry/chapter/electronic-structure-and-the-periodic-table/ |url-status=live |page=}}</ref> {| class="wikitable" style="float:right; margin:0.5em; text-align:center;" ! style="text-align:right;" |ℓ = ! 0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! rowspan=2 | Shell capacity (2''n''<sup>2</sup>)<ref>{{cite web |date=6 May 2020 |title=Electron Configurations |url=https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |access-date=17 April 2022 |website=www.chem.fsu.edu |publisher=Florida State University |archive-date=6 May 2022 |archive-url=https://web.archive.org/web/20220506074340/https://www.chem.fsu.edu/chemlab/chm1045/e_config.html |url-status=live }}</ref> |- ! style="text-align:right;" | Orbital ! s ! p ! d ! f ! g ! h ! i |- ! ''n'' = 1 | bgcolor="{{element color|s-block}}" | 1s | colspan=6 | | 2 |- ! ''n'' = 2 | bgcolor="{{element color|s-block}}" | 2s | bgcolor="{{element color|p-block}}" | 2p | colspan=5 | | 8 |- ! ''n'' = 3 | bgcolor="{{element color|s-block}}" | 3s | bgcolor="{{element color|p-block}}" | 3p | bgcolor="{{element color|d-block}}" | 3d | colspan=4 | | 18 |- ! ''n'' = 4 | bgcolor="{{element color|s-block}}" | 4s | bgcolor="{{element color|p-block}}" | 4p | bgcolor="{{element color|d-block}}" | 4d | bgcolor="{{element color|f-block}}" | 4f | colspan=3 | | 32 |- ! ''n'' = 5 | bgcolor="{{element color|s-block}}" | 5s | bgcolor="{{element color|p-block}}" | 5p | bgcolor="{{element color|d-block}}" | 5d | bgcolor="{{element color|f-block}}" | 5f | bgcolor="{{element color|g-block}}" | 5g | colspan=2 | | 50 |- ! ''n'' = 6 | bgcolor="{{element color|s-block}}" | 6s | bgcolor="{{element color|p-block}}" | 6p | bgcolor="{{element color|d-block}}" | 6d | bgcolor="{{element color|f-block}}" | 6f | bgcolor="{{element color|g-block}}" | 6g | bgcolor="{{element color|h-block}}" | 6h | | 72 |- ! ''n'' = 7 | bgcolor="{{element color|s-block}}" | 7s | bgcolor="{{element color|p-block}}" | 7p | bgcolor="{{element color|d-block}}" | 7d | bgcolor="{{element color|f-block}}" | 7f | bgcolor="{{element color|g-block}}" | 7g | bgcolor="{{element color|h-block}}" | 7h | bgcolor="{{element color|i-block}}" | 7i | 98 |- ! Subshell capacity (4ℓ+2) | 2 | 6 | 10 | 14 | 18 | 22 | 26 | |} Elements are known with up to the first seven shells occupied. The first shell contains only one orbital, a spherical s orbital. As it is in the first shell, this is called the 1s orbital. This can hold up to two electrons. The second shell similarly contains a 2s orbital, and it also contains three dumbbell-shaped 2p orbitals, and can thus fill up to eight electrons (2×1 + 2×3 = 8). The third shell contains one 3s orbital, three 3p orbitals, and five 3d orbitals, and thus has a capacity of 2×1 + 2×3 + 2×5 = 18. The fourth shell contains one 4s orbital, three 4p orbitals, five 4d orbitals, and seven 4f orbitals, thus leading to a capacity of 2×1 + 2×3 + 2×5 + 2×7 = 32.<ref name="Petrucci331" /> Higher shells contain more types of orbitals that continue the pattern, but such types of orbitals are not filled in the ground states of known elements.<ref name="Goudsmit" /> The subshell types are characterized by the [[quantum number]]s. Four numbers describe an orbital in an atom completely: the [[principal quantum number]] ''n'', the [[azimuthal quantum number]] ℓ (the orbital type), the [[magnetic quantum number|orbital magnetic quantum number]] ''m''<sub>ℓ</sub>, and the [[spin quantum number|spin magnetic quantum number]] ''m<sub>s</sub>''.<ref name="FIII19" /> ====ذيلي مدارن لاء آفبائو جو اصول==== [[File:Aufbau Principle-en.svg|thumb|right|192px|Idealized order of subshell filling according to the [[Madelung rule]] ]] The sequence in which the subshells are filled is given in most cases by the [[Aufbau principle]], also known as the Madelung or Klechkovsky rule (after [[Erwin Madelung]] and [[Vsevolod Klechkovsky]] respectively). This rule was first observed empirically by Madelung, and Klechkovsky and later authors gave it theoretical justification.<ref name=Jolly>{{cite book |last1=Jolly |first1=William L. |title=Modern Inorganic Chemistry |edition=1st |publisher=McGraw-Hill |date=1984 |pages=[https://archive.org/details/trent_0116300649799/page/10 10–12] |isbn=0-07-032760-2 |url=https://archive.org/details/trent_0116300649799/page/10 }}</ref><ref name=Ostrovsky/><ref name=Ostrovsky1981/><ref name=Wong/>{{efn|name=lowdin}} The shells overlap in energies, and the Madelung rule specifies the sequence of filling according to:<ref name="Ostrovsky">{{cite journal |last1=Ostrovsky |first1=V. N. |date=May 2001 |title=What and How Physics Contributes to Understanding the Periodic Law |journal=Foundations of Chemistry |volume=3 |issue=2 |pages=145–181 |doi=10.1023/A:1011476405933 |s2cid=15679915 }}</ref> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 4s < 3d < 4p ≪ 5s < 4d < 5p ≪ 6s < 4f < 5d < 6p ≪ 7s < 5f < 6d < 7p ≪ ... <!--write in 8s and 5g when they get discovered--> Here the sign ≪ means "much less than" as opposed to < meaning just "less than".<ref name="Ostrovsky"/> Phrased differently, electrons enter orbitals in order of increasing ''n'' + ℓ, and if two orbitals are available with the same value of ''n'' + ℓ, the one with lower ''n'' is occupied first.<ref name="Goudsmit" /><ref name="Wong">{{cite journal |title=Theoretical justification of Madelung's rule |journal=[[Journal of Chemical Education|J. Chem. Educ.]] |last=Wong |first=D. Pan |date=1979 |issue=11 |pages=714–718 |volume=56 |doi=10.1021/ed056p714 |bibcode = 1979JChEd..56..714W }}</ref> In general, orbitals with the same value of ''n'' + ℓ are similar in energy, but in the case of the s&nbsp;orbitals (with ℓ = 0), quantum effects raise their energy to approach that of the next ''n'' + ℓ group. Hence the periodic table is usually drawn to begin each row (often called a period) with the filling of a new s&nbsp;orbital, which corresponds to the beginning of a new shell.<ref name=Ostrovsky/><ref name=Ostrovsky1981>{{cite journal |last1=Ostrovsky |first1=V. N. |date=1981 |title=Dynamic symmetry of atomic potential |url= |journal=Journal of Physics B: Atomic and Molecular Physics |volume=14 |issue=23 |pages=4425–4439 |doi=10.1088/0022-3700/14/23/008 |bibcode=1981JPhB...14.4425O }}</ref><ref name="Petrucci331" /> Thus, with the exception of the first row, each period length appears twice:<ref name=Ostrovsky/> :2, 8, 8, 18, 18, 32, 32, ... The overlaps get quite close at the point where the d&nbsp;orbitals enter the picture,<ref name="Petrucci328"/> and the order can shift slightly with atomic number<ref name=Cao/> and atomic charge.<ref name="Jorgensen"/>{{efn| Once two to four electrons are removed, the d and f orbitals usually become lower in energy than the s ones:<ref name="Jorgensen"/> :1s ≪ 2s < 2p ≪ 3s < 3p ≪ 3d < 4s < 4p ≪ 4d < 5s < 5p ≪ 4f < 5d < 6s < 6p ≪ 5f < 6d < 7s < 7p ≪ ... and in the limit for extremely highly charged ions, orbitals simply fill in the order of increasing ''n'' instead. There is a gradual transition between the limiting situations of highly charged ions (increasing ''n'') and neutral atoms (Madelung's rule).<ref name="Goudsmit"/> Thus for example, the energy order for the 55th electron outside the xenon core proceeds as follows in the isoelectronic series of caesium (55 electrons):<ref name=elyashevich/> :Cs<sup>0</sup>: 6s < 6p < 5d < 7s < 4f :Ba<sup>+</sup>: 6s < 5d < 6p < 7s < 4f :La<sup>2+</sup>: 5d < 4f < 6s < 6p < 7s :Ce<sup>3+</sup>: 4f < 5d < 6s < 6p < 7s and in the isoelectronic series of holmium (67 electrons), a Ho<sup>0</sup> atom is [Xe]4f<sup>11</sup>6s<sup>2</sup>, but Er<sup>+</sup> is [Xe]4f<sup>12</sup>6s<sup>1</sup>, Tm<sup>2+</sup> through W<sup>7+</sup> are [Xe]4f<sup>13</sup>, and from Re<sup>8+</sup> onward the configuration is [Cd]4f<sup>14</sup>5p<sup>5</sup> following the hydrogenic order.<ref name=rareearths/><ref>{{cite web |url=https://physics.nist.gov/cgi-bin/ASD/ie.pl?spectra=Ho-like&submit=Retrieve+Data&units=1&format=0&order=0&at_num_out=on&sp_name_out=on&ion_charge_out=on&el_name_out=on&seq_out=on&shells_out=on&level_out=on&ion_conf_out=on&e_out=0&unc_out=on&biblio=on |title=NIST Atomic Spectra Database: Ionization Energies Data: All Ho-like |author=NIST |date=2023 |website=nist.gov |publisher=NIST |access-date=5 January 2024 |quote=}}</ref> : Also, the ordering of the orbitals between each ≪ changes somewhat throughout each period. For example, the ordering in argon and potassium is 3p ≪ 4s < 4p ≪ 3d; by calcium it has become 3p ≪ 4s < 3d < 4p; from scandium to copper it is 3p ≪ 3d < 4s < 4p; and from zinc to krypton it is 3p < 3d ≪ 4s < 4p<ref name=Cao>{{cite journal |last1=Cao |first1=Changsu |last2=Vernon |first2=René E. |first3=W. H. Eugen |last3=Schwarz |first4=Jun |last4=Li |date=6 January 2021 |title=Understanding Periodic and Non-periodic Chemistry in Periodic Tables |journal=Frontiers in Chemistry |volume=8 |issue=813 |page=813 |doi=10.3389/fchem.2020.00813 |pmid=33490030 |pmc=7818537 |bibcode=2021FrCh....8..813S |doi-access=free }}</ref> as the d&nbsp;orbitals fall into the core at gallium.<ref>{{cite journal |last1=Tossell |first1=J.A. |date=1 November 1977 |title=Theoretical studies of valence orbital binding energies in solid zinc sulfide, zinc oxide, and zinc fluoride |journal=Inorganic Chemistry |volume=16 |issue=11 |pages=2944–2949 |doi=10.1021/ic50177a056}}</ref><ref name=KW/> Deeply buried core shells in heavy atoms thus come closer to the hydrogenic order: around osmium (''Z'' {{=}} 76) 4f falls below 5p, and around bismuth (''Z'' {{=}} 83) 4f falls below 5s as well.<ref name=rareearths/> }} Starting from the simplest atom, this lets us build up the periodic table one at a time in order of atomic number, by considering the cases of single atoms. In [[hydrogen]], there is only one electron, which must go in the lowest-energy orbital 1s. This [[electron configuration]] is written 1s<sup>1</sup>, where the superscript indicates the number of electrons in the subshell. [[Helium]] adds a second electron, which also goes into 1s, completely filling the first shell and giving the configuration 1s<sup>2</sup>.<ref name="FIII19">{{cite book |last1=Feynman |first1=Richard |last2=Leighton |first2=Robert B. |last3=Sands |first3=Matthew |date=1964 |title=The Feynman Lectures on Physics |url=https://feynmanlectures.caltech.edu/III_19.html |publisher=Addison–Wesley |volume=3 |chapter=19. The Hydrogen Atom and The Periodic Table |isbn=0-201-02115-3 |access-date=15 August 2021 |archive-date=19 October 2021 |archive-url=https://web.archive.org/web/20211019202245/https://www.feynmanlectures.caltech.edu/III_19.html |url-status=live }}</ref><ref name=jensenlaw>{{cite web|url=http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-url=https://web.archive.org/web/20201110113324/http://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/081.%20Periodic%20Table.pdf|archive-date=10 November 2020|last1=Jensen|first1=William B.|author-link=William B. Jensen|title=The Periodic Law and Table|date=2000|access-date=10 December 2022}}</ref>{{efn|In fact, electron configurations represent a first-order approximation: an atom really exists in a superposition of multiple configurations, and electrons in an atom are indistinguishable.<ref name=Scerri2009/> The elements in the d- and f-blocks have multiple configurations separated by small energies and can change configuration depending on the chemical environment.<ref name=Jorgensen/> In some of the undiscovered g-block elements, mixing of configurations may become so important that the result can no longer be well-described by a single configuration.<ref name=nefedov/>}} Starting from the third element, [[lithium]], the first shell is full, so its third electron occupies a 2s orbital, giving a 1s<sup>2</sup> 2s<sup>1</sup> configuration. The 2s electron is lithium's only valence electron, as the 1s subshell is now too tightly bound to the nucleus to participate in chemical bonding to other atoms: such a shell is called a "[[Core electron|core shell]]". The 1s subshell is a core shell for all elements from lithium onward. The 2s subshell is completed by the next element [[beryllium]] (1s<sup>2</sup> 2s<sup>2</sup>). The following elements then proceed to fill the 2p subshell. [[Boron]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>1</sup>) puts its new electron in a 2p orbital; [[carbon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>2</sup>) fills a second 2p orbital; and with [[nitrogen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>3</sup>) all three 2p orbitals become singly occupied. This is consistent with [[Hund's rule]], which states that atoms usually prefer to singly occupy each orbital of the same type before filling them with the second electron. [[Oxygen]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>4</sup>), [[fluorine]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>5</sup>), and [[neon]] (1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>) then complete the already singly filled 2p orbitals; the last of these fills the second shell completely.<ref name="FIII19" /><ref name=jensenlaw/> Starting from element 11, [[sodium]], the second shell is full, making the second shell a core shell for this and all heavier elements. The eleventh electron begins the filling of the third shell by occupying a 3s orbital, giving a configuration of 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>1</sup> for sodium. This configuration is abbreviated [Ne] 3s<sup>1</sup>, where [Ne] represents neon's configuration. [[Magnesium]] ([Ne] 3s<sup>2</sup>) finishes this 3s orbital, and the following six elements [[aluminium]], [[silicon]], [[phosphorus]], [[sulfur]], [[chlorine]], and [[argon]] fill the three 3p orbitals ([Ne] 3s<sup>2</sup> 3p<sup>1</sup> through [Ne] 3s<sup>2</sup> 3p<sup>6</sup>).<ref name="FIII19"/><ref name=jensenlaw/> This creates an analogous series in which the outer shell structures of sodium through argon are analogous to those of lithium through neon, and is the basis for the periodicity of chemical properties that the periodic table illustrates:<ref name="FIII19" /> at regular but changing intervals of atomic numbers, the properties of the chemical elements approximately repeat.<ref name="Scerri17">Scerri, p. 17</ref> The first 18 elements can thus be arranged as the start of a periodic table. Elements in the same column have the same number of valence electrons and have analogous valence electron configurations: these columns are called groups. The single exception is helium, which has two valence electrons like beryllium and magnesium, but is typically placed in the column of neon and argon to emphasise that its outer shell is full. (Some contemporary authors question even this single exception, preferring to consistently follow the valence configurations and place helium over beryllium.) There are eight columns in this periodic table fragment, corresponding to at most eight outer-shell electrons.<ref name="cartoon">{{cite book |last1=Gonick |first1=First |last2=Criddle |first2=Craig |date=2005 |title=The Cartoon Guide to Chemistry |publisher=Collins |pages=17–65 |isbn=0-06-093677-0}}</ref> A period begins when a new shell starts filling.<ref name="Petrucci331" /> Finally, the colouring illustrates the [[block (periodic table)|blocks]]: the elements in the s-block (coloured red) are filling s&nbsp;orbitals, while those in the p-block (coloured yellow) are filling p&nbsp;orbitals.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | {{nowrap|2×(1+3) {{=}} '''8''' elements}}<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|bg={{element color|p-block}}|3p}} |} Starting the next row, for [[potassium]] and [[calcium]] the 4s subshell is the lowest in energy, and therefore they fill it.<ref name="FIII19"/><ref name=jensenlaw/> Potassium adds one electron to the 4s shell ([Ar] 4s<sup>1</sup>), and calcium then completes it ([Ar] 4s<sup>2</sup>). However, starting from [[scandium]] ([Ar] 3d<sup>1</sup> 4s<sup>2</sup>) the 3d subshell becomes the next highest in energy. The 4s and 3d subshells have approximately the same energy and they compete for filling the electrons, and so the occupation is not quite consistently filling the 3d orbitals one at a time. The precise energy ordering of 3d and 4s changes along the row, and also changes depending on how many electrons are removed from the atom. For example, due to the repulsion between the 3d electrons and the 4s ones, at [[chromium]] the 4s energy level becomes slightly higher than 3d, and so it becomes more profitable for a chromium atom to have a [Ar] 3d<sup>5</sup> 4s<sup>1</sup> configuration than an [Ar] 3d<sup>4</sup> 4s<sup>2</sup> one. A similar anomaly occurs at [[copper]], whose atom has a [Ar] 3d<sup>10</sup> 4s<sup>1</sup> configuration rather than the expected [Ar] 3d<sup>9</sup> 4s<sup>2</sup>.<ref name="FIII19" /> These are violations of the Madelung rule. Such anomalies, however, do not have any chemical significance:<ref name="Jorgensen" /> most chemistry is not about isolated gaseous atoms,<ref>Wulfsberg, p. 27</ref> and the various configurations are so close in energy to each other<ref name="Petrucci328">Petrucci et al., p. 328</ref> that the presence of a nearby atom can shift the balance.<ref name="FIII19" /> Therefore, the periodic table ignores them and considers only idealized configurations.<ref name="Jensen2009">{{cite journal|author1-link=William B. Jensen |last1=Jensen |first1=William B. |date=2009 |title=Misapplying the Periodic Law |journal=Journal of Chemical Education |volume=86 |issue=10 |page=1186 |doi=10.1021/ed086p1186 |bibcode=2009JChEd..86.1186J |doi-access=free }}</ref> At [[zinc]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup>), the 3d orbitals are completely filled with a total of ten electrons.<ref name="FIII19"/><ref name=jensenlaw/> Next come the 4p orbitals, completing the row, which are filled progressively by [[gallium]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>1</sup>) through [[krypton]] ([Ar] 3d<sup>10</sup> 4s<sup>2</sup> 4p<sup>6</sup>), in a manner analogous to the previous p-block elements.<ref name="FIII19" /><ref name=jensenlaw/> From gallium onwards, the 3d orbitals form part of the electronic core, and no longer participate in chemistry.<ref name=KW/> The s- and p-block elements, which fill their outer shells, are called [[main-group element]]s; the d-block elements (coloured blue below), which fill an inner shell, are called [[transition element]]s (or transition metals, since they are all metals).<ref name="Petrucci326">Petrucci et al., pp. 326–7</ref> The next 18 elements fill the 5s orbitals ([[rubidium]] and [[strontium]]), then 4d ([[yttrium]] through [[cadmium]], again with a few anomalies along the way), and then 5p ([[indium]] through [[xenon]]).<ref name=Petrucci331/><ref name=jensenlaw/> Again, from indium onward the 4d orbitals are in the core.<ref name=jensenlaw/><ref>{{cite journal |last1=Farberovich |first1=O. V. |last2=Kurganskii |first2=S. I. |last3=Domashevskaya |first3=E. P. |date=1980 |title=Problems of the OPW Method. II. Calculation of the Band Structure of ZnS and CdS |url= |journal=Physica Status Solidi B |volume=97 |issue=2 |pages=631–640 |doi=10.1002/pssb.2220970230 |bibcode=1980PSSBR..97..631F }}</ref> Hence the fifth row has the same structure as the fourth.<ref name="Petrucci331" /> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | {{nowrap|2×(1+3+5) {{=}} '''18''' elements}}<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |} The sixth row of the table likewise starts with two s-block elements: [[caesium]] and [[barium]].<ref name=jensenlaw/> After this, the first f-block elements (coloured green below) begin to appear, starting with [[lanthanum]]. These are sometimes termed inner transition elements.<ref name="Petrucci326" /> As there are now not only 4f but also 5d and 6s subshells at similar energies, competition occurs once again with many irregular configurations;<ref name="Petrucci328" /> this resulted in some dispute about where exactly the f-block is supposed to begin, but most who study the matter agree that it starts at lanthanum in accordance with the Aufbau principle.<ref name="Jensen-2015" /> Even though lanthanum does not itself fill the 4f subshell as a single atom, because of repulsion between electrons,<ref name="Jorgensen">{{cite journal |last1=Jørgensen |first1=Christian |date=1973 |title=The Loose Connection between Electron Configuration and the Chemical Behavior of the Heavy Elements (Transuranics) |journal=Angewandte Chemie International Edition |volume=12 |issue=1 |pages=12–19 |doi=10.1002/anie.197300121}}</ref> its 4f orbitals are low enough in energy to participate in chemistry.<ref name="Hamilton">{{cite journal |last1=Hamilton |first1=David C. |date=1965 |title=Position of Lanthanum in the Periodic Table |journal=American Journal of Physics |volume=33 |issue=8 |pages=637–640 |doi=10.1119/1.1972042|bibcode=1965AmJPh..33..637H}}</ref><ref name=elyashevich>{{cite book |last=El'yashevich |first=M. A. |author-link= |date=1953 |title=Spectra of the Rare Earths |url= |location=Moscow |publisher=State Publishing House of Technical-Theoretical Literature |pages=382, 397 |isbn=}}</ref><ref name=Cp3Ln>{{cite journal | last1=Krinsky | first1=Jamin L. | last2=Minasian | first2=Stefan G. | last3=Arnold | first3=John | title=Covalent Lanthanide Chemistry Near the Limit of Weak Bonding: Observation of (CpSiMe<sub>3</sub>)<sub>3</sub>Ce−ECp* and a Comprehensive Density Functional Theory Analysis of Cp<sub>3</sub>Ln−ECp (E = Al, Ga) | journal=Inorganic Chemistry | publisher=American Chemical Society (ACS) | volume=50 | issue=1 | date=8 December 2010 | issn=0020-1669 | doi=10.1021/ic102028d | pages=345–357| pmid=21141834 }}</ref> At [[ytterbium]], the seven 4f orbitals are completely filled with fourteen electrons; thereafter, a series of ten transition elements ([[lutetium]] through [[mercury (element)|mercury]]) follows,<ref name=jensenlaw/><ref name="JensenLr">{{cite web|url=https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |title=Some Comments on the Position of Lawrencium in the Periodic Table |last1=Jensen |first1=W. B. |date=2015 |access-date=20 September 2015 |archive-url=https://web.archive.org/web/20151223091325/https://www.che.uc.edu/jensen/W.%20B.%20Jensen/Reprints/251.%20Lawrencium.pdf |archive-date=23 December 2015 }}</ref><ref>{{cite journal |last1=Wang |first1=Fan |last2=Le-Min |first2=Li |date=2002 |title=镧系元素 4f 轨道在成键中的作用的理论研究 |trans-title=Theoretical Study on the Role of Lanthanide 4f Orbitals in Bonding |language=zh |journal=Acta Chimica Sinica |volume=62 |issue=8 |pages=1379–84}}</ref><ref name="LaF3">{{cite journal |last1=Xu |first1=Wei |last2=Ji |first2=Wen-Xin |first3=Yi-Xiang |last3=Qiu |first4=W. H. Eugen |last4=Schwarz |first5=Shu-Guang |last5=Wang |date=2013 |title=On structure and bonding of lanthanoid trifluorides LnF<sub>3</sub> (Ln = La to Lu) |journal=Physical Chemistry Chemical Physics |volume=2013 |issue=15 |pages=7839–47 |doi=10.1039/C3CP50717C|pmid=23598823 |bibcode=2013PCCP...15.7839X }}</ref> and finally six main-group elements ([[thallium]] through [[radon]]) complete the period.<ref name=jensenlaw/><ref name="Pyykko">{{cite journal | title = Octacarbonyl Ion Complexes of Actinides [An(CO)8]+/− (An=Th, U) and the Role of f Orbitals in Metal–Ligand Bonding | first1= Chaoxian |last1=Chi |first2=Sudip |last2=Pan | first3= Jiaye |last3=Jin |first4=Luyan |last4=Meng | first5= Mingbiao |last5=Luo |first6=Lili |last6=Zhao |first7=Mingfei |last7=Zhou |first8=Gernot |last8=Frenking | journal = [[Chemistry: A European Journal|Chem. Eur. J.]] | year = 2019 | volume = 25 | issue = 50 | pages = 11772–11784 | doi = 10.1002/chem.201902625 | pmid= 31276242 | pmc= 6772027 |doi-access=free }}</ref> From lutetium onwards the 4f orbitals are in the core,<ref name=jensenlaw/><ref name=Cp3Ln/> and from thallium onwards so are the 5d orbitals.<ref name=jensenlaw/><ref name=KW/><ref>{{cite journal |last1=Singh |first1=Prabhakar P. |date=1994 |title=Relativistic effects in mercury: Atom, clusters, and bulk |url= |journal=Physical Review B |volume=49 |issue=7 |pages=4954–4958 |doi=10.1103/PhysRevB.49.4954 |pmid=10011429 |bibcode=1994PhRvB..49.4954S }}</ref> The seventh row is analogous to the sixth row: 7s fills ([[francium]] and [[radium]]), then 5f ([[actinium]] to [[nobelium]]), then 6d ([[lawrencium]] to [[copernicium]]), and finally 7p ([[nihonium]] to [[oganesson]]).<ref name=jensenlaw/> Starting from lawrencium the 5f orbitals are in the core,<ref name=jensenlaw/> and probably the 6d orbitals join the core starting from nihonium.<ref name=jensenlaw/><ref name=VI>{{cite journal |last1=Hu |first1=Shu-Xian |last2=Zou |first2=Wenli |date=23 September 2021 |title=Stable copernicium hexafluoride (CnF<sub>6</sub>) with an oxidation state of VI+ |journal=Physical Chemistry Chemical Physics |volume=2022 |issue=24 |pages=321–325 |doi=10.1039/D1CP04360A|pmid=34889909 |bibcode=2021PCCP...24..321H }}</ref>{{efn|Compounds that would use the 6d orbitals of nihonium as valence orbitals have been theoretically investigated, but they are all expected to be too unstable to observe.<ref name="Seth">{{cite journal |last1=Seth |first1=Michael |last2=Schwerdtfeger |first2=Peter |first3=Knut |last3=Fægri |date=1999 |title=The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds |journal=Journal of Chemical Physics |volume=111 |issue=14 |pages=6422–6433 |doi=10.1063/1.480168 |bibcode=1999JChPh.111.6422S|s2cid=41854842 |doi-access=free |hdl=2292/5178 |hdl-access=free }}</ref>}} Again there are a few anomalies along the way:<ref name="Petrucci331">Petrucci et al., p. 331</ref> for example, as single atoms neither actinium nor [[thorium]] actually fills the 5f subshell, and lawrencium does not fill the 6d shell, but all these subshells can still become filled in chemical environments.<ref>{{cite journal |last1=Kelley |first1=Morgan P. |last2=Deblonde |first2=Gauthier J.-P. |first3=Jing |last3=Su |first4=Corwin H. |last4=Booth |first5=Rebecca J. |last5=Abergel |first6=Enrique R. |last6=Batista |first7=Ping |last7=Yang |date=2018 |title=Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO) |url= https://escholarship.org/uc/item/4tc1b0xz|journal=Inorganic Chemistry |volume=57 |issue=9 |pages=5352–5363 |doi=10.1021/acs.inorgchem.8b00345 |pmid=29624372 |osti=1458511 }}</ref><ref name="Johansson">{{cite journal|last1=Johansson |first1=B. |last2=Abuja |first2=R. |last3=Eriksson |first3=O. |last4=Wills |first4=J. M. |display-authors=3 |year=1995 |title=Anomalous fcc crystal structure of thorium metal. |journal=Physical Review Letters |volume=75 |issue=2 |pages=280–283 |doi=10.1103/PhysRevLett.75.280|pmid=10059654 |bibcode=1995PhRvL..75..280J|url=https://zenodo.org/record/1233903 }}</ref><ref name=XuPyykko> {{cite journal |last1=Xu |first1=Wen-Hua |last2=Pyykkö |first2=Pekka |date=8 June 2016 |url=http://pubs.rsc.org/-/content/articlehtml/2016/cp/c6cp02706g |title=Is the chemistry of lawrencium peculiar |journal=Phys. Chem. Chem. Phys. |volume=2016 |issue=18 |pages=17351–5 |doi=10.1039/c6cp02706g |pmid=27314425 |access-date=24 April 2017|bibcode=2016PCCP...1817351X |hdl=10138/224395 |s2cid=31224634 |hdl-access=free }}</ref> For a very long time, the seventh row was incomplete as most of its elements do not occur in nature. The missing [[transuranic element|elements beyond uranium]] started to be synthesized in the laboratory in 1940, when neptunium was made.<ref name="Scerri354" /> (However, the first element to be discovered by synthesis rather than in nature was technetium in 1937.) The row was completed with the synthesis of [[tennessine]] in 2010<ref name="117s">{{cite journal |last1=Oganessian |first1=Yu.Ts. |author-link1=Yuri Oganessian |last2=Abdullin |first2=F.Sh. |last3=Bailey |first3=P.D. |last4=Benker |first4=D.E. |last5=Bennett |first5=M.E. |last6=Dmitriev |first6=S.N. |last7=Ezold |first7=J.G. |last8=Hamilton |first8=J.H. |last9=Henderson |first9=R.A. |first10=M.G. |last10=Itkis |first11=Yuri V. |last11=Lobanov |first12=A.N. |last12=Mezentsev |first13=K. J. |last13=Moody |first14=S.L. |last14=Nelson |first15=A.N. |last15=Polyakov |first16=C.E. |last16=Porter |first17=A.V. |last17=Ramayya |first18=F.D. |last18=Riley |first19=J.B. |last19=Roberto |first20=M. A. |last20=Ryabinin |first21=K.P. |last21=Rykaczewski |first22=R.N. |last22=Sagaidak |first23=D.A. |last23=Shaughnessy |first24=I.V. |last24=Shirokovsky |first25=M.A. |last25=Stoyer |first26=V.G. |last26=Subbotin |first27=R. |last27=Sudowe |first28=A.M. |last28=Sukhov |first29=Yu.S. |last29=Tsyganov |first30=Vladimir K. |last30=Utyonkov |first31=A.A. |last31=Voinov |first32=G.K. |last32=Vostokin |first33=P.A. |last33=Wilk |display-authors=6 |title=Synthesis of a new element with atomic number {{nowrap|''Z'' {{=}} 117}} |year=2010 |journal=Physical Review Letters |volume=104 |issue=14 |page=142502 |doi=10.1103/PhysRevLett.104.142502 |pmid=20481935 |bibcode=2010PhRvL.104n2502O |s2cid=3263480 |doi-access=free }}</ref> (the last element [[oganesson]] had already been made in 2002),<ref name="pp2002">{{cite journal|author=Oganessian, Yu. T.|display-authors=etal|title=Results from the first <sup>249</sup>Cf+<sup>48</sup>Ca experiment|url=https://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf|journal=JINR Communication|date=2002|access-date=13 June 2009|archive-date=13 December 2004|archive-url=https://web.archive.org/web/20041213100709/https://www.jinr.ru/publish/Preprints/2002/287%28D7-2002-287%29e.pdf}}</ref> and the last elements in this seventh row were given names in 2016.<ref name="IUPAC-20161130">{{cite news |author=<!--Not stated--> |title=IUPAC Announces the Names of the Elements 113, 115, 117, and 118 |url=https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |date=30 November 2016 |work=[[IUPAC]] |access-date=1 December 2016 |archive-date=30 November 2016 |archive-url=https://web.archive.org/web/20161130111959/https://iupac.org/iupac-announces-the-names-of-the-elements-113-115-117-and-118/ |url-status=live }}</ref> <div style="overflow-x:auto"> {| class="wikitable" style="margin:auto;" | bgcolor="{{element color|s-block}}" | 1<br />[[hydrogen|H]] | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|s-block}} | 2<br />[[helium|He]] | 2×1 = '''2''' elements<br />{{inline block|bg={{element color|s-block}}|1s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|{{0|0p}}}} |- | bgcolor="{{element color|s-block}}" | 3<br />[[lithium|Li]] | bgcolor="{{element color|s-block}}" | 4<br />[[beryllium|Be]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 5<br />[[boron|B]] | bgcolor="{{element color|p-block}}" | 6<br />[[carbon|C]] | bgcolor="{{element color|p-block}}" | 7<br />[[nitrogen|N]] | bgcolor="{{element color|p-block}}" | 8<br />[[oxygen|O]] | bgcolor="{{element color|p-block}}" | 9<br />[[fluorine|F]] | bgcolor="{{element color|p-block}}" | 10<br />[[neon|Ne]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|2s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|2p}} |- | bgcolor="{{element color|s-block}}" | 11<br />[[sodium|Na]] | bgcolor="{{element color|s-block}}" | 12<br />[[magnesium|Mg]] | | | | | | | | | | | | | | | | | | | | | | | | | bgcolor="{{element color|p-block}}" | 13<br />[[aluminium|Al]] | bgcolor="{{element color|p-block}}" | 14<br />[[silicon|Si]] | bgcolor="{{element color|p-block}}" | 15<br />[[phosphorus|P]] | bgcolor="{{element color|p-block}}" | 16<br />[[sulfur|S]] | bgcolor="{{element color|p-block}}" | 17<br />[[chlorine|Cl]] | bgcolor="{{element color|p-block}}" | 18<br />[[argon|Ar]] | 2×(1+3) = '''8''' elements<br />{{inline block|bg={{element color|s-block}}|3s}} {{inline block|{{0|0f}}}} {{inline block|{{0|0d}}}} {{inline block|bg={{element color|p-block}}|3p}} |- | bgcolor="{{element color|s-block}}" | 19<br />[[potassium|K]] | bgcolor="{{element color|s-block}}" | 20<br />[[calcium|Ca]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 21<br />[[scandium|Sc]] | bgcolor="{{element color|d-block}}" | 22<br />[[titanium|Ti]] | bgcolor="{{element color|d-block}}" | 23<br />[[vanadium|V]] | bgcolor="{{element color|d-block}}" | 24<br />[[chromium|Cr]] | bgcolor="{{element color|d-block}}" | 25<br />[[manganese|Mn]] | bgcolor="{{element color|d-block}}" | 26<br />[[iron|Fe]] | bgcolor="{{element color|d-block}}" | 27<br />[[cobalt|Co]] | bgcolor="{{element color|d-block}}" | 28<br />[[nickel|Ni]] | bgcolor="{{element color|d-block}}" | 29<br />[[copper|Cu]] | bgcolor="{{element color|d-block}}" | 30<br />[[zinc|Zn]] | bgcolor="{{element color|p-block}}" | 31<br />[[gallium|Ga]] | bgcolor="{{element color|p-block}}" | 32<br />[[germanium|Ge]] | bgcolor="{{element color|p-block}}" | 33<br />[[arsenic|As]] | bgcolor="{{element color|p-block}}" | 34<br />[[selenium|Se]] | bgcolor="{{element color|p-block}}" | 35<br />[[bromine|Br]] | bgcolor="{{element color|p-block}}" | 36<br />[[krypton|Kr]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|4s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|3d}} {{inline block|bg={{element color|p-block}}|4p}} |- | bgcolor="{{element color|s-block}}" | 37<br />[[rubidium|Rb]] | bgcolor="{{element color|s-block}}" | 38<br />[[strontium|Sr]] | | | | | | | | | | | | | | | bgcolor="{{element color|d-block}}" | 39<br />[[yttrium|Y]] | bgcolor="{{element color|d-block}}" | 40<br />[[zirconium|Zr]] | bgcolor="{{element color|d-block}}" | 41<br />[[niobium|Nb]] | bgcolor="{{element color|d-block}}" | 42<br />[[molybdenum|Mo]] | bgcolor="{{element color|d-block}}" | 43<br />[[technetium|Tc]] | bgcolor="{{element color|d-block}}" | 44<br />[[ruthenium|Ru]] | bgcolor="{{element color|d-block}}" | 45<br />[[rhodium|Rh]] | bgcolor="{{element color|d-block}}" | 46<br />[[palladium|Pd]] | bgcolor="{{element color|d-block}}" | 47<br />[[silver|Ag]] | bgcolor="{{element color|d-block}}" | 48<br />[[cadmium|Cd]] | bgcolor="{{element color|p-block}}" | 49<br />[[indium|In]] | bgcolor="{{element color|p-block}}" | 50<br />[[tin|Sn]] | bgcolor="{{element color|p-block}}" | 51<br />[[antimony|Sb]] | bgcolor="{{element color|p-block}}" | 52<br />[[tellurium|Te]] | bgcolor="{{element color|p-block}}" | 53<br />[[iodine|I]] | bgcolor="{{element color|p-block}}" | 54<br />[[xenon|Xe]] | 2×(1+3+5) = '''18''' elements<br />{{inline block|bg={{element color|s-block}}|5s}} {{inline block|{{0|0f}}}} {{inline block|bg={{element color|d-block}}|4d}} {{inline block|bg={{element color|p-block}}|5p}} |- | bgcolor="{{element color|s-block}}" | 55<br />[[caesium|Cs]] | bgcolor="{{element color|s-block}}" | 56<br />[[barium|Ba]] | bgcolor="{{element color|f-block}}" | 57<br />[[lanthanum|La]] | bgcolor="{{element color|f-block}}" | 58<br />[[cerium|Ce]] | bgcolor="{{element color|f-block}}" | 59<br />[[praseodymium|Pr]] | bgcolor="{{element color|f-block}}" | 60<br />[[neodymium|Nd]] | bgcolor="{{element color|f-block}}" | 61<br />[[promethium|Pm]] | bgcolor="{{element color|f-block}}" | 62<br />[[samarium|Sm]] | bgcolor="{{element color|f-block}}" | 63<br />[[europium|Eu]] | bgcolor="{{element color|f-block}}" | 64<br />[[gadolinium|Gd]] | bgcolor="{{element color|f-block}}" | 65<br />[[terbium|Tb]] | bgcolor="{{element color|f-block}}" | 66<br />[[dysprosium|Dy]] | bgcolor="{{element color|f-block}}" | 67<br />[[holmium|Ho]] | bgcolor="{{element color|f-block}}" | 68<br />[[erbium|Er]] | bgcolor="{{element color|f-block}}" | 69<br />[[thulium|Tm]] | bgcolor="{{element color|f-block}}" | 70<br />[[ytterbium|Yb]] | bgcolor="{{element color|d-block}}" | 71<br />[[lutetium|Lu]] | bgcolor="{{element color|d-block}}" | 72<br />[[hafnium|Hf]] | bgcolor="{{element color|d-block}}" | 73<br />[[tantalum|Ta]] | bgcolor="{{element color|d-block}}" | 74<br />[[tungsten|W]] | bgcolor="{{element color|d-block}}" | 75<br />[[rhenium|Re]] | bgcolor="{{element color|d-block}}" | 76<br />[[osmium|Os]] | bgcolor="{{element color|d-block}}" | 77<br />[[iridium|Ir]] | bgcolor="{{element color|d-block}}" | 78<br />[[platinum|Pt]] | bgcolor="{{element color|d-block}}" | 79<br />[[gold|Au]] | bgcolor="{{element color|d-block}}" | 80<br />[[mercury (element)|Hg]] | bgcolor="{{element color|p-block}}" | 81<br />[[thallium|Tl]] | bgcolor="{{element color|p-block}}" | 82<br />[[lead|Pb]] | bgcolor="{{element color|p-block}}" | 83<br />[[bismuth|Bi]] | bgcolor="{{element color|p-block}}" | 84<br />[[polonium|Po]] | bgcolor="{{element color|p-block}}" | 85<br />[[astatine|At]] | bgcolor="{{element color|p-block}}" | 86<br />[[radon|Rn]] | {{nowrap|2×(1+3+5+7) {{=}} '''32''' elements}}<br />{{nowrap|{{inline block|bg={{element color|s-block}}|6s}} {{inline block|bg={{element color|f-block}}|4f}} {{inline block|bg={{element color|d-block}}|5d}} {{inline block|bg={{element color|p-block}}|6p}}}} |- | bgcolor="{{element color|s-block}}" | 87<br />[[francium|Fr]] | bgcolor="{{element color|s-block}}" | 88<br />[[radium|Ra]] | bgcolor="{{element color|f-block}}" | 89<br />[[actinium|Ac]] | bgcolor="{{element color|f-block}}" | 90<br />[[thorium|Th]] | bgcolor="{{element color|f-block}}" | 91<br />[[protactinium|Pa]] | bgcolor="{{element color|f-block}}" | 92<br />[[uranium|U]] | bgcolor="{{element color|f-block}}" | 93<br />[[neptunium|Np]] | bgcolor="{{element color|f-block}}" | 94<br />[[plutonium|Pu]] | bgcolor="{{element color|f-block}}" | 95<br />[[americium|Am]] | bgcolor="{{element color|f-block}}" | 96<br />[[curium|Cm]] | bgcolor="{{element color|f-block}}" | 97<br />[[berkelium|Bk]] | bgcolor="{{element color|f-block}}" | 98<br />[[californium|Cf]] | bgcolor="{{element color|f-block}}" | 99<br />[[einsteinium|Es]] | bgcolor="{{element color|f-block}}" | 100<br />[[fermium|Fm]] | bgcolor="{{element color|f-block}}" | 101<br />[[mendelevium|Md]] | bgcolor="{{element color|f-block}}" | 102<br />[[nobelium|No]] | bgcolor="{{element color|d-block}}" | 103<br />[[lawrencium|Lr]] | bgcolor="{{element color|d-block}}" | 104<br />[[rutherfordium|Rf]] | bgcolor="{{element color|d-block}}" | 105<br />[[dubnium|Db]] | bgcolor="{{element color|d-block}}" | 106<br />[[seaborgium|Sg]] | bgcolor="{{element color|d-block}}" | 107<br />[[bohrium|Bh]] | bgcolor="{{element color|d-block}}" | 108<br />[[hassium|Hs]] | bgcolor="{{element color|d-block}}" | 109<br />[[meitnerium|Mt]] | bgcolor="{{element color|d-block}}" | 110<br />[[darmstadtium|Ds]] | bgcolor="{{element color|d-block}}" | 111<br />[[roentgenium|Rg]] | bgcolor="{{element color|d-block}}" | 112<br />[[copernicium|Cn]] | bgcolor="{{element color|p-block}}" | 113<br />[[nihonium|Nh]] | bgcolor="{{element color|p-block}}" | 114<br />[[flerovium|Fl]] | bgcolor="{{element color|p-block}}" | 115<br />[[moscovium|Mc]] | bgcolor="{{element color|p-block}}" | 116<br />[[livermorium|Lv]] | bgcolor="{{element color|p-block}}" | 117<br />[[tennessine|Ts]] | bgcolor="{{element color|p-block}}" | 118<br />[[oganesson|Og]] | 2×(1+3+5+7) = '''32''' elements<br />{{inline block|bg={{element color|s-block}}|7s}} {{inline block|bg={{element color|f-block}}|5f}} {{inline block|bg={{element color|d-block}}|6d}} {{inline block|bg={{element color|p-block}}|7p}} |} </div> This completes the modern periodic table, with all seven rows completely filled to capacity.<ref name="IUPAC-20161130" /><!--when 8th row elements are discovered, replace them here and write "The eighth row finishes prematurely as we run out of elements discovered."--> ===Electron configuration table=== The following table shows the electron configuration of a neutral gas-phase atom of each element. Different configurations can be favoured in different chemical environments.<ref name="Jorgensen" /> The main-group elements have entirely regular electron configurations; the transition and inner transition elements show twenty irregularities due to the aforementioned competition between subshells close in energy level. For the last ten elements (109–118), experimental data is lacking<ref>{{cite journal |url=https://www.nist.gov/pml/periodic-table-elements |title=Periodic Table of the Elements |author=[[National Institute of Standards and Technology]] (NIST) |date=August 2019 |journal=NIST |access-date=7 February 2021 |archive-date=8 February 2021 |archive-url=https://web.archive.org/web/20210208182536/https://www.nist.gov/pml/periodic-table-elements |url-status=live }}</ref> and therefore calculated configurations have been shown instead.<ref>{{cite journal |last1=Fricke |first1=B. |editor-last=Dunitz |editor-first=J. D. |year=1975 |journal=Structure and Bonding |volume=21 |pages=89–144 |title=Superheavy elements a prediction of their chemical and physical properties|publisher=Springer-Verlag |location=Berlin |doi=10.1007/BFb0116496|isbn=978-3-540-07109-9 }}</ref> Completely filled subshells have been greyed out. {{Periodic table (electron configuration)}} ==تبديليون== ==دوري رجحان== ==عنصرن جي درجه بندي== ==تاريخ== ==ستين دور کان اڳ مستقبل ۾ واڌارو== ==متبادل دوري جدولون== ==پڻ ڏسو== * نيوڪليوسنٿيسس ==لنڪس== '''دوري جدول''' (Periodic Table) جنهن کي [[ڪيميائي عنصر|عنصرن]] جي دوري جدول پڻ چيو ويندو آهي، سا ڪيميائي عنصرن جي قطارن (Periods) ۽ ڪالمن (Groups) ۾ هڪ جدولي پيشڪش آهي. اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. قطار ۾ عنصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن ۽ ڪالمن ۾ انهن جي خاصيتون ٻيهر ورجائي ظاهر ٿئين تيون. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. ھي جدول [[ايٽمي نمبر|ائٽمي نمبر]]، اليڪٽراني جوڙجڪ ۽ ورجندڙ ڪيميائي خاصيتن جي ڄاڻ ڏيندي آهي. وقتي ٽيبل هڪ ترتيب ڏنل ترتيب آهي ڪيميائي عناصر کي قطارن (Periods) ۽ ڪالمن (Groups). اهو ڪيميا جو هڪ آئڪن آهي ۽ وڏي پيماني تي فزڪس ۽ ٻين سائنسن ۾ استعمال ٿيندو آهي. اهو دور جي قانون جي هڪ تصوير آهي، جنهن ۾ چيو ويو آهي ته جڏهن عناصر انهن جي ايٽمي انگن جي ترتيب سان ترتيب ڏنل آهن، انهن جي ملڪيت جي تقريبن ٻيهر ورجائي ظاهر ٿئي ٿي. ٽيبل کي چار لڳ ڀڳ مستطيل علائقن ۾ ورهايو ويو آهي، جنهن کي "بلاڪ" سڏجي ٿو. ساڳئي گروپ ۾ عناصر ساڳيون ڪيميائي خاصيتون ڏيکاريندا آهن. عمودي، افقي ۽ ويڪرائي رجحانات دورانياتي جدول جي خصوصيت ڪن ٿا. دھاتي ڪردار هڪ گروپ جي هيٺان ۽ هڪ دور ۾ ساڄي کان کاٻي طرف وڌندو آهي. نان ميٽالڪ ڪردار وڌندو آهي دوراني جدول جي هيٺان کاٻي پاسي کان مٿي ساڄي طرف. پھرين دوري جدول جيڪا عام طور تي قبول ڪئي وئي، جيڪا 1869ع ۾ روسي ڪيمسٽ دمتري مينڊيليف جي ھئي؛ هن ايٽمي ماس تي ڪيميائي ملڪيتن جي انحصار جي طور تي دورياتي قانون ٺاهيو. جيئن ته ان وقت سڀ عنصر سڃاتل نه هئا، ان ڪري هن جي دور جي جدول ۾ خال هئا، ۽ مينڊيليف ڪاميابيءَ سان دورياتي قانون کي استعمال ڪيو ته جيئن ڪجهه غائب عنصرن جي ملڪيتن جي اڳڪٿي ڪئي وڃي. 19 صدي عيسويء جي آخر ۾ دورياتي قانون کي هڪ بنيادي دريافت طور تسليم ڪيو ويو. ان جي وضاحت 20 صدي جي شروعات ۾ ڪئي وئي، ايٽمي انگن جي دريافت ۽ ڪوانٽم ميڪانڪس ۾ لاڳاپيل اڳڀرائي واري ڪم سان، ٻئي نظريا ايٽم جي اندروني ڍانچي کي روشن ڪرڻ لاءِ ڪم ڪن ٿا. 1945ع ۾ گلين ٽي. سيبورگ جي دريافت سان جدول جي جديد شڪل کي تسليم ڪيو ويو ته ايڪٽائنائيڊ حقيقت ۾ ڊي-بلاڪ عنصرن جي بجاءِ ايف-بلاڪ هئا. دوري جدول ۽ قانون هاڻي جديد ڪيميا جو مرڪزي ۽ لازمي حصو آهن. ===پريزينٽيشن=== Both forms represent the same periodic table.<ref name="IUPAC-redbook" /> The form with the f-block included in the main body is sometimes called the 32-column<ref name="IUPAC-redbook" /> or long form;<ref name="Thyssen" /> the form with the f-block cut out the 18-column<ref name="IUPAC-redbook" /> or medium-long form.<ref name="Thyssen" /> The 32-column form has the advantage of showing all elements in their correct sequence, but it has the disadvantage of requiring more space.<ref>Scerri, p. 375</ref> The form chosen is an editorial choice, and does not imply any change of scientific claim or statement. For example, when discussing [[Group 3 element#Composition|the composition of group 3]], the options can be shown equally (unprejudiced) in both forms.<ref name="2015IUPAC">{{cite web|url=https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|title=The constitution of group 3 of the periodic table|publisher=IUPAC|access-date=30 July 2016|date=2015|url-status=live|archive-url=https://web.archive.org/web/20160705053631/https://iupac.org/projects/project-details/?project_nr=2015-039-2-200|archive-date=5 July 2016}}</ref> Periodic tables usually at least show the elements' symbols; many also provide supplementary information about the elements, either via colour-coding or as data in the cells. The above table shows the names and atomic numbers of the elements, and also their blocks, natural occurrences and [[standard atomic weight]]s. For the short-lived elements without standard atomic weights, the mass number of the most stable known isotope is used instead. Other tables may include properties such as state of matter, melting and boiling points, densities, as well as provide different classifications of the elements.{{efn|See for example [https://www.sigmaaldrich.com/SG/en/product/aldrich/z543209 the periodic table poster sold by Sigma-Aldrich.]}} ==حوالا== {{حوالا}} [[زمرو:ڪيميا]] [[زمرو:دوري جدول]] [[زمرو:ڪيميائي درجه بندي]] kfwiv8a3b1lj0yogkg0keb5gbvr03bh ٽيڪنيشئين 0 49206 322566 158233 2025-07-11T09:33:21Z KaleemBot 10779 خودڪار: [[زمرو:سائنسي پيشا]] جو اضافو 322566 wikitext text/x-wiki '''مستري''' عام طور تي ان شخص کي چيو ويندو آھي جيڪو [[ڪاٺ]]، [[لوھ]]، [[پلاسٽڪ]]، [[بجلي]] ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪري. [[فائل: Technician.png|thumb|مستري]] [[زمرو:سائنسي پيشا]] c8zy7tfn3e7sjpa5fws4xk0ufrunph5 322571 322566 2025-07-11T10:15:03Z Ibne maryam 17680 322571 wikitext text/x-wiki '''مستري''' عام طور تي ان شخص کي چيو ويندو آھي جيڪو تعميرات، [[ڪاٺ]]، [[لوھ]]، [[پلاسٽڪ]]، [[بجلي]] ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪري. [[فائل: Technician.png|thumb|مستري]] ==حوالا== [[زمرو:پيشا]] [[زمرو:فن تعمير]] rva52eqn275k2gp3ht10128s1vevr68 322572 322571 2025-07-11T10:26:07Z Ibne maryam 17680 322572 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==حوالا== {{حوالا}} [[زمرو:فن]] [[زمرو:ٽيڪنالاجي]] [[زمرو:سائنسي پيشا]] ==حوالا== [[زمرو:پيشا]] [[زمرو:فن تعمير]] imabolgrgs0x3dzz4k5ma1fc1dekz2t 322573 322572 2025-07-11T10:26:23Z Ibne maryam 17680 322573 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==حوالا== {{حوالا}} [[زمرو:فن]] [[زمرو:ٽيڪنالاجي]] [[زمرو:سائنسي پيشا]] [[زمرو:پيشا]] [[زمرو:فن تعمير]] svrf4va06b4ycokyg98rv60t9lb4yvv 322574 322573 2025-07-11T10:27:58Z Ibne maryam 17680 322574 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== ==حوالا== {{حوالا}} [[زمرو:فن]] [[زمرو:ٽيڪنالاجي]] [[زمرو:سائنسي پيشا]] [[زمرو:پيشا]] [[زمرو:فن تعمير]] cvoklmteozizf2cypopy9jetn9nojmt 322575 322574 2025-07-11T10:30:53Z Ibne maryam 17680 /* پڻ ڏسو */ 322575 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== {{Portalbar|Technology}} {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[Category:Science occupations]] [[Category:Technicians| ]] ==ٻاهريان ڳنڍڻا== ==حوالا== {{حوالا}} [[زمرو:فن]] [[زمرو:ٽيڪنالاجي]] [[زمرو:سائنسي پيشا]] [[زمرو:پيشا]] [[زمرو:فن تعمير]] rahbo3ysfdy1b1r3ujcwj8qyccumz57 322581 322575 2025-07-11T10:56:26Z Ibne maryam 17680 322581 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== {{Portalbar|Technology}} {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[Category:Science occupations]] [[Category:Technicians| ]] ==حوالا== {{حوالا}} [[زمرو:فن]] [[زمرو:ٽيڪنالاجي]] [[زمرو:سائنسي پيشا]] [[زمرو:پيشا]] [[زمرو:فن تعمير]] 2oi4wu5ju5c8ismsf5rqnjj4qo2699a 322582 322581 2025-07-11T10:57:24Z Ibne maryam 17680 322582 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== {{Portalbar|Technology}} {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[زمرو:ٽيڪنيشئين]] [[Category:Science occupations]] [[Category:Technicians| ]] ==حوالا== {{حوالا}} [[زمرو:فن]] [[زمرو:ٽيڪنالاجي]] [[زمرو:سائنسي پيشا]] [[زمرو:پيشا]] [[زمرو:فن تعمير]] 9rzppmxdh2whwz53ixlu58go2np6p1d 322583 322582 2025-07-11T10:58:09Z Ibne maryam 17680 /* حوالا */ 322583 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== {{Portalbar|Technology}} {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[زمرو:ٽيڪنيشئين]] [[Category:Science occupations]] [[Category:Technicians| ]] ==حوالا== {{حوالا}} [[زمرو:فن]] tcdmj7oh59jtzg80j0bjdu1wfdeibkv 322584 322583 2025-07-11T11:00:00Z Ibne maryam 17680 /* ٻاهريان ڳنڍڻا */ 322584 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== {{Portalbar|طرزيات}} {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[زمرو:ٽيڪنيشئين]] [[زمرو:سائنسي پيشا]] [[Category:Science occupations]] [[Category:Technicians| ]] ==حوالا== {{حوالا}} [[زمرو:فن]] l7cyxwih4lbh6yq1pbc5r8y6zf29zry 322586 322584 2025-07-11T11:01:18Z Ibne maryam 17680 Ibne maryam صفحي [[مستري]] کي [[ٽيڪنيشئين]] ڏانھن چوريو 322584 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== {{Portalbar|طرزيات}} {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[زمرو:ٽيڪنيشئين]] [[زمرو:سائنسي پيشا]] [[Category:Science occupations]] [[Category:Technicians| ]] ==حوالا== {{حوالا}} [[زمرو:فن]] l7cyxwih4lbh6yq1pbc5r8y6zf29zry 322588 322586 2025-07-11T11:02:04Z Ibne maryam 17680 /* ٻاهريان ڳنڍڻا */ 322588 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== {{Portalbar|طرزيات}} {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[زمرو:ٽيڪنيشئين]] [[زمرو:سائنسي پيشا]] ==حوالا== {{حوالا}} [[زمرو:فن]] 2pwo3cm5ka36or90auwpr5ho7cfj2lx 322589 322588 2025-07-11T11:02:54Z Ibne maryam 17680 /* ٻاهريان ڳنڍڻا */ 322589 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== [[:باب:طرزيات]] {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[زمرو:ٽيڪنيشئين]] [[زمرو:سائنسي پيشا]] ==حوالا== {{حوالا}} [[زمرو:فن]] o3nqpbzb4hkfht0ulde7bn2gwk8yvuu 322590 322589 2025-07-11T11:03:28Z Ibne maryam 17680 /* حوالا */ 322590 wikitext text/x-wiki '''ٽيڪنيشئين''' يا '''مستري''' (Technician) ڪنهن سائنسي فن، تعميرات، صنعتن يا مشينري جا فني ماهر هوندا آهن. [[ڪاٺ|ترکان]]، [[لوھ|لوهار]]، [[بجلي|اليڪٽريشن]]، [[پلمبر]]، پلاسٽڪ ۽ ٻين شين جي مرمت ۽ بحاليءَ جو ڪم ڪندڙ کي پڻ چيو ويندو آهي. [[فائل: Technician.png|thumb|مستري]] ==تفصيل== {{Short description|Professional practitioner of technology and its subclasses}} {{Other uses}} {{Infobox occupation | name = Technician | image = Technician checks circuit card.jpg | caption = Systems technician checks a circuit card that delivers telecommunications services to the Cancer Information Service at the National Cancer Institute | official_names = Technician | type = [[Profession]] | activity_sector = [[Applied science]] | competencies = [[Mathematics]], [[science]], [[design]], [[analysis]], [[critical thinking]], [[ethics]], [[project management]], [[economics]], [[creativity]], [[problem solving]] | formation = [[Technical education]] | employment_field = [[Research and development]], [[Industrial sector|industry]], [[business]] | related_occupation = [[Scientist]], [[project manager]], [[inventor]] }} A '''technician''' is a worker in a field of [[technology]] who is proficient in the relevant skill and technique,<ref>[https://dictionary.cambridge.org/dictionary/english/technician ''dictionary.cambridge.org'']</ref> with a relatively practical understanding of the theoretical principles.<ref>{{cite web|title=Technician|url=http://www.dictionary.com/browse/technician|website=Dictionary.com|access-date=7 October 2017}}</ref> ==پڻ ڏسو== [[:باب:طرزيات]] * [[ٽيڪنالاجي جي تاريخ]] * [[ٽيڪنيڀياس]] ==ٻاهريان ڳنڍڻا== [[:باب:طرزيات]] {{Wiktionary|technician}} {{Commons category-inline|Technicians}} {{Authority control}} [[زمرو:ٽيڪنيشئين]] [[زمرو:سائنسي پيشا]] ==حوالا== {{حوالا}} nw6t0lj5v0swmbe6qlx8556tqebswkj شيخ مجيب الرحمٰن 0 59463 322511 305368 2025-07-10T18:58:01Z Mojo.bangladesh 20455 322511 wikitext text/x-wiki {{Infobox officeholder | name = شيخ مجيب الرحمٰن | image = Bangabandhu Sheikh Mujibur Rahman.jpg | caption = تصوير {{circa|1950}} | imagesize = | office = [[File:Presidential Crest of Bangladesh.svg|30px]][[بنگلاديش جو صدر]] | primeminister = [[محمد منصور علي]] | term_start = 25 جنوري 1975ع | term_end = 15 آگسٽ 1975ع | predecessor = [[محمد محمداللہ]] | successor = [[خوندقر مستاق احمد]] | primeminister1 = [[تاج الدين احمد]] | term_start1 = 17 اپريل 1971ع | term_end1 = 12 جنوري 1972ع | predecessor1 = ''پوسٽ قائم ٿي'' | successor1 = [[ابو سعيد چوڌري]] | office2 = [[بنگلاديش جو وزيراعظم]] | president2 = {{Plainlist| * [[ابو سعيد چوڌري]] * محمد محمداللہ }} | term_start2 = 12 جنوري 1972ع | term_end2 = 24 جنوري 1975ع | predecessor2 = [[تاج الدين احمد]] | successor2 = محمد منصور علي | office3 = [[عوامي ليگ|عوامي ليگ جو صدر]] | termstart3 = 25 جنوري 1966ع | termend3 = 18 جنوري 1974ع | 1blankname3 = جنرل سيڪريٽري | 1namedata3 = {{ubl|تاج الدين احمد|[[ذلرحمان]]}} | predecessor3 = [[عبدالرشيد ترڪابنگش]] | successor3 = [[عبدال حسنات محمد قمرالزمان|اي. ايڇ. ايم قمرالزمان]] | birth_date = {{Birth date|df=yes|1920|3|17}} | birth_place = [[ٽُنگيپارا اپضلاع |ٽُنگيپارا]]، بنگلا پريزيڊنسي<!-- DO NOT LINK PER MOS:GEOLINK -->، برطانوي ھندوستان<!-- DO NOT LINK PER MOS:GEOLINK --> | death_date = {{Death date and age|df=yes|1975|8|15|1920|3|17}} | death_place = [[ڍاڪا]]، بنگلاديش<!-- DO NOT LINK PER MOS:GEOLINK --> | death_cause = [[شيخ مجيب الرحمان جو قتل|قتل]] | residence = [[بنگلابنڌو ميموريل ميوزيم|ڌنموندي، ڍاڪا]] | occupation = سياستدان | nationality = {{Plainlist| * [[برطانوي ھندوستان]] (1920ع کان 1947ع) * پاڪستان (1947ع کان 1971ع) * بنگلاديش (1971ع 1975ع) }} | party = [[بنگلاديش ڪريشڪ سرامڪ عوامي ليگ]] (1975ع) | otherparty = {{Plainlist| * [[آل انڊيا مسلم ليگ]] (1937ع کان 1947ع) * [[مسلم ليگ (پاڪستان)|پاڪستان مسلم ليگ]] (1947ع کان 1949ع) * [[عوامي ليگ (پاڪستان)|آل پاڪستان عوامي ليگ]] (1949ع کان 1971ع) * [[بنگلاديش عوامي ليگ]] (1971ع کان 1975ع) }} | spouse = [[شيخ فضيلت النسا مجيب|بيگم فضيلت النسا]] | children = {{Flatlist| * [[شيخ حسينہ|حسينہ]] * [[شيخ ڪمال|ڪمال]] * [[شيخ جمال|جمال]] * [[شيخ ريحانہ|ريحانہ]] * [[شيخ روسيل|روسيل]] }} | mother = [[سائرہ خاتون|شيخ سائرہ خاتون]] | father = [[شيخ لطف الرحمان]] | relatives = [[Tungipara Sheikh family]] | alma_mater = {{Plainlist| * [[مولانا آزاد ڪاليج|اسلاميہ ڪاليج، ڪلڪتا]] ([[بيچلر آف آرٽس|بي. اي.]]) * [[ڍاڪا يونيورسٽي]] }} | signature = Sheikh Mujibur Rahman Sign.svg | resting_place = [[شيخ مجيب الرحمان جو مقبرو]] | nickname = خوڪا | native_name = {{nobold|শেখ মুজিবুর রহমান}} | native_name_lang = bn }} '''شيخ مجيب الرحمان''' ({{lang-en|Sheikh Mujibur Rahman}}) (پيدائش 17 مارچ 1920 ، 15 آگسٽ 1975 ۾ وفات ڪئي) اوڀر پاڪستان ۾ هڪ بنگالي اڳواڻ ۽ بنگلاديش جو باني هو. == شروعاتي زندگي == شيخ مجيب الرحمان 17 مارچ 1920 تي فريدپور ضلعي ۾ پيدا ٿيو. هن 1947 ۾ ڪلڪتي جي اسلاميه ڪاليج ، مان تاريخ ۽ پوليٽيڪل سائنس ۾ بي اي ڪئي. هڪ شاگرد طور هن سياسي سرگرمين ۾ حصو وٺڻ شروع ڪيو. 1943 کان 1947 تائين هو انڊو مسلم ليگ جي ڪائونسل جو ميمبر رهيو. 1945 کان 1946 تائين هو اسلاميه ڪاليج آف اسٽوڊنٽس يونين جو جنرل سيڪريٽري هو. 1946 ع ۾ هو بنگال اسيمبلي جو ميمبر چونڊيو ويو. 1947 ۾ پاڪستان ٺهڻ جي فوراً بعد هن مسلم ليگ تان استعيفيٰ ڏني ۽ اردو جي مخالفت جي لاءِ پاڪستان مسلم اسٽوڊنٽس ليگ قائم ڪئي. ليگ جي ٻين ڪيترن ئي ليڊرن وانگر ، هن مسلم ليگ جو ساٿ ڏنو ڇاڪاڻ ته اها ان وقت جي هڪ مشهور تحريڪ هئي. ۽ ان کي شامل ڪرڻ سان ، طاقت حاصل ڪري سگھجي ٿي. == عوامي لیگ == جڏهن حسين شهيد سهروردي 1952 ۾ عوامي ليگ جو بنياد وڌو ، مجيب الرحمان ان جي قيام ۾ حصو ورتو. 1953 ۾ هو عوامي ليگ جو جنرل سيڪريٽري ٿيو ۽ مارچ 1954 جي چونڊن ۾ هو مشرقي پاڪستان جي صوبائي اسيمبلي جو ميمبر چونڊيو ويو جتوئي فرنٽ جو اميدوار. هن 1956 ۾ آئين جي مسوده ۾ حصو ورتو ، پر مجيب الرحمان آئين ۾ مقرر ڪيل صوبائي خودمختياري جي حدن سان اتفاق نه ڪيو. هن 1952 ۾ پينڪنگ ۾ عالمي امن ڪانفرنس ۽ 1956 ۾ اسٽاڪ هوم ۾ عالمي امن ڪانفرنس ۾ شرڪت ڪئي. انهي سال بعد ، هن پارلياماني وفد جي سربراهي طور دولت مشترڪه چين جو پڻ سفر ڪيو. فيبروري 1966 ۾ ، هو لاهور ۾ نيشنل ڪانفرنس جي اجلاس ۾ پهريون ڀيرو ڇهه نقطا پيش ڪيو. === ڇهه نُڪتا === مجيب جا مشهور ڇهه نقطا جنهن جي بنياد تي هو اليڪشن وڙهيو * 1. لاهور جي قرارداد مطابق ، آئين کي بالغ اڪثريت ۽ پارلياماني انداز جي حڪومت جي بنياد تي چونڊيل مقنن جي بالادستي جي بنياد تي هڪ حقيقي وفاق جي ضمانت هئڻ گهرجي. * 2. وفاقي سرڪار صرف ٻن شعبن کي برقرار رکندي ، يعني دفاع ۽ پرڏيهي معاملا ، جڏهن ته ٻيا ادارا وفاق ٺاهڻ واري آئيني يونٽ ۾ ورهايل هوندا. * 3. ** (a) ملڪ جي ٻنهي هٿن ۾ ٻن الڳ پر هڪ ٻئي کي تبديل ٿيندڙ ڪرنٽ متعارف ڪرايو ؛ يا ** (ب) ساڳئي ملڪ لاءِ س currencyي ڪرنسي متعارف ڪرائي وڃي پر ان لاءِ اسان کي موثر آئيني شقون ترتيب ڏيڻ گهرجن ته جيئن اوڀر پاڪستان کان مغربي پاڪستان جي پئسن جي منتقلي روڪي سگهجي. اوڀر پاڪستان لاءِ هڪ الڳ بينڪننگ پاليسي قائم ڪئي وڃي ۽ هڪ الڳ مالي پاليسي جوڙي وڃي. * 4. آمدني ۽ ٽيڪس گڏ ڪرڻ جو اختيار وفاقي يونٽن کي اختيار ڪرڻ گهرجي. مرڪز کي اهڙو اختيار نه هئڻ گهرجي ته جيئن وفاق وفاق جي يونٽن جي ٽيڪسن ۾ حصيدار ٿي سگهي ته جيئن اها هن جون ضرورتون پوريون ڪري سگهي. اهڙا وفاقي فنڊ س acrossي ملڪ مان گڏ ڪيل ٽيڪس جي مقرر ڪيل رقم تي مشتمل هوندا. * 5. ** (a) ٻنهي هٿن ۾ پرڏيهي مٽاسٽا جي آمدني لاءِ ٻه الڳ اڪائونٽ هئڻ گهرجن ۽ ** (ب) اوڀر پاڪستان جي آمدني اوڀر پاڪستان جي ڪنٽرول ۾ هجڻ گهرجي ۽ اولهه پاڪستان جي آمدني اولهه پاڪستان جي قبضي هيٺ هجڻ گهرجي. ** (c) مرڪز جي مٽاسٽا جون ضرورتون ٻنهي ڌرين کي هڪٻئي سان يا هڪ مقرر ڪيل تناسب جي مطابق ملڻ گهرجن. ** (ڊ) ٻنهي هٿن جي وچ ۾ گهريلو شين جي آزاد حرڪت تي ڪو فرض عائد نه ڪيو ويندو. ** (اي) آئين موجب وفاقي يونٽن کي اختيار هوندو ته واپاري معاهدا ۽ ٻاهرين واپاري مشنن جي قيام سان واپاري رابطا قائم ڪري سگهن. * 6. اوڀر پاڪستان لاءِ مليشيا يا فوجي قوت قائم ڪرڻ. == بنگلاديش جو قيام == مجيب الرحمان کي سندس انتها پسند سرگرمين لاءِ ڪيترائي ڀيرا گرفتار ڪيو ويو. هن کي 1949 ۾ akaاڪا يونيورسٽي مان ڪ andيو ويو ۽ ٽي سال جيل ۾ گذاريا. هو 1958 ۽ 1959 ۾ ايوب خان جي دور ۾ اقتدار ۾ رهيو ، پوءِ سازش جي الزام ۾ مئي 1966 ۾ گرفتار ٿيو ، پر فيبروري 1969 ۾ ڪجهه سياسي اڳواڻ (جن ۾ ذوالفقار علي ڀٽو به شامل آهن) گول ميز ڪانفرنس ۾ شرڪت ڪرڻ لاءِ موجود هئا. هو ضمانت تي آزاد ٿيو ۽ ڪيس واپس ورتو ويو. جڏهن ڊسمبر 1970 ۾ پاڪستان جون عام چونڊون منعقد ٿيون ، شيخ مجيب الرحمان جي عوامي ليگ هڪ بي مثال فتح حاصل ڪئي ۽ اوڀر پاڪستان جي نمائندگي جو آئيني حق حاصل ڪيو ۽ پاڪستان جي لاءِ نئين ڇهن نقاطي آئين جو اعلان ڪيو جڏهن صدر يحيٰ جڏهن خان دستور ساز اسيمبلي جو اجلاس نه گهرايو ، مجیب الرحمان مارچ 1971 ۾ عدم تعاون جي تحريڪ شروع ڪئي ، جنهن سبب هن 25 مارچ 1971 تي فوج طرفان گرفتار ڪيو ، ۽ اوڀر پاڪستان ۾ فوجي ڪارروائي ڪئي. جڏهن ڊسمبر 1971 ۾ آپريشن ناڪام ٿيو ۽ akaاڪا ۾ پاڪستاني فوجون مجيب الرحمان جي حمايت ۾ وڙهندي هندستاني فوجن جي هٿن ۾ ڏئي ويون ، مجيب الرحمان کي 8 جنوري 1972 ۾ لنڊن ۽ دهلي ذريعي 10 جنوري تي آزاد ڪيو ويو. 12 جنوري تي akaاڪا پهتو ۽ بنگلاديش جي وزيراعظم طور نامزد ٿيو. == هڪ حڪمران طور == ڇاڪاڻ ته عوامي ليگ سوشلزم ۽ سيڪيولر ازم جي حامي هئي ، بنگلاديشي حڪومت انهي بنياد تي سڌارن جو آغاز ڪيو. ان پٽ ان پٽ ، ٽيڪسٽائيل ۽ شپ بلڊنگ انڊسٽريز کي قوم سازي ڏني وئي. نئون آئين هڪ سال اندر تيار ڪيو ويو ، بنگلاديش کي سوشلسٽ ۽ سيڪيولر جمهوريت قرار ڏنو ويو. نئين آئين تحت عوامي ليگ مارچ 1973 جي چونڊن ۾ 300 مان 292 سيٽون کٽي ورتائين. شيخ مجيب الرحمان سڀني پارٽين کي (خاص ڪري جماعت اسلامي ۽ جمعيت اسلامي جي شاگردن) کي قرار ڏنو جن پاڪستان جي وحدت لاءِ ڪم ڪيو ، قانون جي خلاف. مجيب الرحمان هندستان سان خاص لاڳاپا قائم ڪيا ڇاڪاڻ ته بنگلاديش کي پاڪستان کان ڌار ڪرڻ ۾ هندستان جو سڀ کان وڏو هٿ هو. اهڙيءَ طرح ، 1973 ۾ ، ڀارت سان دوستيءَ جو هڪ معاهدو ڪيو ويو. ڀارت ان جي امداد لاءِ وڏي قيمت ادا ڪئي. هندستاني فوجن بنگلاديش کي ڇڏڻ کان اڳ ڪيترين ئي فيڪٽريري مشينون انڊيا منتقل ڪيون. خاص رعايتن جي ڪري ، واپار ۾ هندستان کي مٿانهون حاصل ٿي ۽ بنگلاديش جي معيشت هندستان تي ڀاڙڻ واري ٿي. [8] سازگار ماحول ڏسي ، مغربي بنگال جي هندو به مشرقي پاڪستان ڏانهن موٽڻ شروع ڪيو. 1974 ۾ ملڪ ۾ وڏو ڏڪار ھو. == پڇاڙيءَ جا ڏهاڙا == هنن سڀني عوامل هڪ ڀيرو ٻيهر بنگلاديش ۾ بدامني جي لهر پيدا ڪئي ۽ عوامي ليگ ۽ مجيب الرحمان جي خلاف آواز بلند ڪيو ويو. مجيب الرحمان انهي بيچيني کي دٻائڻ ٿي چاهيو. ڊسمبر 1974 ۾ ، رياست هنگامي حالت جو اعلان ڪيو ويو ۽ آئيني حق معطل ڪيا ويا. آئين ۾ ڪيتريون ترميمون به ڪيون ويون ، ملڪ ۾ صدارتي نظام نافذ هو ۽ جنوري 1975 ۾ مجيب الرحمان صدر بڻيو ۽ محمد منصور علي کي وزيراعظم بڻايو ويو. مجيب الرحمان انهن ترميمن جي ذريعي سڀئي اختيار حاصل ڪيا. بنگالي ، جيڪي فطرتاً جمهوريت پسند آهن ، اهو ظلم برداشت نه ڪري سگهيا ۽ فوج بغاوت ڪري ڇڏي ۽ 15 آگسٽ 1975 ع تي مجيب الرحمان ۽ هن جي خاندان کي قتل ڪيو ويو. رڳو پنهنجون ٻه ڌيئرون ، شيخ حسينا ۽ شيخ ريحانا ، اولهه جرمني ۾ زنده رهيون. شيخ حسينه واجد بعد ۾ ملڪ جي وزيراعظم بڻجي وئي. == حوالا == {{حوالا}} [[زمرو:شخصيتون]] [[زمرو:بنگلاديش]] [[زمرو:1920ع جون پيدائشون]] [[زمرو:1975ع جون فوتگيون]] [[زمرو:بنگالي ماڻهو]] [[زمرو:پاڪستاني سياستدان]] 877sldnwwuuwzoywwfjue2n3amu67qa پاڪستاني سينيٽ جون ايندڙ چونڊون 0 61079 322536 252039 2025-07-11T04:29:00Z TommiMaoz 20515 322536 wikitext text/x-wiki {{Infobox election | election_name = 2021ع پاڪستاني سينيٽ چونڊون | country = پاڪستان | type = قانونساز | ongoing = نہ | previous_election = [[2018ع پاڪستاني سينيٽ چونڊون]] | previous_year = [[2018ع پاڪستاني سينيٽ چونڊون|2018ع]] | next_election = [[2024ع پاڪستاني سينيٽ چونڊون]] | next_year = 2024ع |seats_for_election = [[پاڪستان جو سينيٽ|پاڪستان جي سينيٽ]] ۾ 100 مان 48 سيٽون | majority_seats = 51 | election_date = 6 مارچ 2021ع تي يا ان کان ڳ | image1 = [[File:Flag of the Pakistan Muslim League.svg|100px]] | leader1 = [[راجہ ظفرالحق]] | party1 = پاڪستان مسلم ليگ (ن) | leaders_seat1 = ٽيڪنو ڪريٽ [[پنجاب (پاڪستان)|پنجاب]] | last_election1 = 33 | seats_needed1 = {{increase}}19 | seats1 = - | seat_change1 = فيصلو ٿيڻو آهي | image2 = [[File:Flag of Pakistan People's Part.svg|100px]] | leader2 = [[شيري رحمان]] | leaders_seat2 = جنرل [[سنڌ]] | party2 = پاڪستان پيپلز پارٽي | last_election2 = 20 | seats_needed2 = {{increase}}31 | seats2 = - | seat_change2 = فيصلو ٿيڻو آھي | leader3 = [[اعظم سواتي]] | leaders_seat3 = ٽيڪنو ڪريٽ [[خيبر پختونخوا|ڪي پي]] | image3 = [[File:Pakistan Tehreek-e-Insaf flag (25-32 ratio).svg|100px]] | party3 = پاڪستان تحريڪ انصاف | last_election3 = 13 | seats_needed3 = {{increase}}38 | seats3 = - | seat_change3 = فيصلو ٿيڻو آهي | map_image = 2021 Pakistan Senate election results.svg | map_size = | map_caption = | title = [[پاڪستان جي سينيٽ جو چيئرمين|چيئرمين]] | before_election = [[صادق سنجراڻي]] | before_party = آزاد (سياستدان) | after_election = فيصلو ٿيڻو آهي | after_party = فيصلو ٿيڻو آهي | posttitle = چونڊيل چيئرمين }} '''2021ع پاڪستاني سينيٽ چونڊون''' 6 مارچ 2021ع تي يا ان کان اڳ ٿينديون. 5 مارچ 2021 تي 104 سينيٽرن مان 52 رٽائر ٿيندا.<ref>{{Cite web|url=https://www.thenews.com.pk/print/497502-why-sanjrani-should-quit|title=Why Sanjrani should quit?|date=2019-07-12|website=www.thenews.com.pk|language=en|access-date=2019-07-24}}</ref> [[وفاقي منتظم شدہ علائقا|وفاقي منتظم شدہ علائقن]] (فاٽا) جي [[خيبر پختونخوا]] ۾ ضم ٿيڻ بعد، فاٽا جون سينيٽ جون سيٽون ختم ٿي ويون ھيون، ان ڪري ان جي 8 مان 4 سيٽن تي چونڊ نہ ٿيندي. رھيل 4 سيٽون پڻ 2024ع ۾ ختم ٿي وينديون. == حوالا == {{Reflist|30em}} [[زمرو:پاڪستان ۾ سينيٽ چونڊون]] t8cw37z8wjb5ysksglouvy2dv2xhs01 ٽرانسجينڊر حقن جي تحريڪ 0 75271 322532 312807 2025-07-10T21:11:36Z KaleemBot 10779 خودڪار: [[زمرو:تحريڪون]] جو اضافو + ترتيب 322532 wikitext text/x-wiki {{خانہ معلومات شخصیت|}}'''ٽرانس جينڊر حقن جي تحريڪ''' ٽرانس جينڊر ماڻهن جي قانوني حيثيت کي ؤڌائڻ ڏيڻ ۽ هائوسنگ، روزگار، عوامي رهائش، تعليم ۽ صحت جي سار سنڀال ۾ ٽين جنس جي ماڻهن جي خلاف ٽوڪ ۽ تشدد کي ختم ڪرڻ لاء هڪ تحريڪ آهي. ٽرانسجينڊر سرگرمي جو هڪ وڏو مقصد اهو آهي ته صنفي تصديق جي سرجري يا ڪنھن به طبي گھرجن جي بنا ڪنھن ماڻھوءَ کي موجوده صنفي سڃاڻپ جي مطابق سڃاڻپ جي دستاويزن ۾ تبديلين جي اجازت ڏني وڃي. ھي ''صنف خود سڃاڻپ جي نالي'' سان مشهور آهي. ھي ھلچل وشال ايل جي بي ٽي حقن جي تحريڪ جو حصو آهي. == تاريخ == ٽرانس جينڊر تحريڪ جي حدن جي سڃاڻپ ڪجهه چرچا جو موضوع بڻيل رهيو آهي. روايتي طور تي، هڪ ضابطي بند سياسي سڃاڻپ جو ثبوت 1952 ۾ سامهون آيو، جڏهن ورجينيا پرنس، جيڪو هڪ ٽرانس عورت آھي، تنھن ٻين سان گڏجي ٽرانسويسٽيا: دي جرنل آف دي امريڪن سوسائٽي فار ايڪوالٽي ان ڊريس جي شروعات ڪئي. هن ڇپائي کي ڪجهه ماڻهن پاران آمريڪا ۾ ٽرانس جينڊر حقن جي تحريڪ جي شروعات سمجهيو ويندو آهي، جيتوڻيڪ اهو لفظ "ٽرانس جينڊر" عام استعمال ۾ اچڻ ۾ ڪيترائي سال لڳا. اسٽون وال جھڳڙن کان اڳ جي سالن ۾، ايل جي بي ٽي جي حقن لاءِ ٻيا اپاءَ ورتا وياھا. هڪ گهٽ مشهور واقعو 1959 ۾ ڪوپر ڊو نوٽس جھڳڙو آهي جيڪو شھر جي وچ ۾ لاس اينجلس جي شهر ۾ ٿيو، جڏهن ڪوپر ڊو نٽس ڪوئن ميلي ۾ ھم جنس پرست، ۽ ٽرانس جنس وارا ماڻهو، جن کي اڪثر ڪري ايل اي پي ڊي ، جي پاران ھيسايو ويو ھو، پوليس جان ريچي سميت ٽن مردن کي گرفتار ڪرڻ کان پوءِ واپس وڙهندي هئي. جان رچي سميت. سرپرستن پوليس کي ڊونٽ ۽ ڪافي جا پيالا اڇلائڻ شروع ڪيا. LAPDايل اي پي ڊي مدد لاءِ سڏ ڪيو ۽ ڪيترن ئي وڳوڙين کي گرفتار ڪيو. رچي ۽ ٻيا ٻه اصل قيدي ڀڄڻ ۾ ڪامياب ٿي ويا. آگسٽ 1966 ۾، ڪامپٽن ڪيفيٽريا فساد سان فرانسسڪو جي ٽنڊرلوئن ضلعي ۾ ٿيو. اهو واقعو آمريڪا جي تاريخ ۾ پهريون رڪارڊ ٿيل LGBT سان لاڳاپيل فسادن مان هڪ هو. ڪوپر جي ساڳئي واقعي ۾، ڊريگ ڪائنس، طوائف ۽ ٽرانس ماڻهن پوليس جي زيادتي جي خلاف جنگ ڪئي. جڏهن هڪ ٽرانسجينڈر عورت پوليس آفيسر تي ڪافي اڇلائي گرفتاري جي مزاحمت ڪئي، ڊريگ ڪائنس روڊن تي نڪري آيا، انهن جي اونچين هيلس ۽ ڳري بيگز سان واپس وڙهندي. <ref name="Stryker">Stryker, Susan. ''Transgender History''. First Printing edition. Berkeley, CA: Seal Press, 2008.</ref> ايندڙ رات، باقاعدي سرپرست شامل ٿي ويا اسٽريٽ هسٽلرز، ٽينڊرلوئن اسٽريٽ ماڻهن، ۽ LGBT ڪميونٽي جا ٻيا ميمبر پوليس جي تشدد جي خلاف سندن موقف ۾. <ref name="screaming">''Screaming Queens: The Riot at Compton's Cafeteria'' (documentary film by Victor Silverman and [[Susan Stryker]], 2005)</ref> اهو نشان لڳايو سان فرانسسڪو ۾ ٽرانس ايڪٽوزم جي شروعات. <ref name="Boyd">Boyd, Nan Alamilla (2004). "San Francisco" in the ''Encyclopedia of Lesbian, Gay, Bisexual and Transgendered History in America'', Ed. Marc Stein. Vol. 3. Charles Scribner's Sons. pp. 71–78.</ref> 1969 ۾، اسٽون وال فسادن جو سال، ٽرجنسينڊ لفظ اڃا استعمال ۾ نه هو. پر جڏهن صنفي لحاظ کان غير مطابقت رکندڙ ماڻهو جهڙوڪ ڊريگ ڪنگ اسٽرم ڊي لاوري ۽ پاڻ سڃاڻي ”اسٽريٽ ڪوئن“ مارشا پي. جانسن فسادن ۾ سڀ کان اڳيان هئا، ڊي لاوري کي وڏي پيماني تي مڃيو وڃي ٿو ته پوليس سان جدوجهد ئي هڪ چمڪ هئي. جنهن ميڙ کي واپس ڪيو. <ref name="Gremore">{{حوالو ويب|url=http://www.queerty.com/storme-delarverie-rosa-parks-of-the-gay-rights-movement-dies-at-93-20140527|title=Stormé DeLarverie, "Rosa Parks" Of The Gay Rights Movement, Dies at 93|last=Gremore|first=Graham|date=May 27, 2014|publisher=[[Queerty]]|access-date=March 22, 2015}}</ref> <ref name="NYTobit">Yardley, William (May 29, 2014) "[https://www.nytimes.com/2014/05/30/nyregion/storme-delarverie-early-leader-in-the-gay-rights-movement-dies-at-93.html?_r=0 Storme DeLarverie, Early Leader in the Gay Rights Movement, Dies at 93]" in ''[[The New York Times]]''.</ref> بغاوت جي شاهدن پڻ شروعاتي ٽرانس ڪارڪنن ۽ هم جنس پرست لبريشن فرنٽ جي ميمبرن، ززو نووا ۽ جيڪي هارمونا جو حوالو ڏنو، جانسن سان گڏ، بغاوت جي ڪيترن ئي راتين تي پوليس جي خلاف پش بيڪ ۾ "فرنٽ لائن" ويڙهاڪن جي طور تي. <ref name="CarterVanguard">{{ڪتابن مان حوالا|url=https://archive.org/details/stonewallriotsth0000cart/page/61/mode/2up|title=Stonewall: The Riots that Sparked the Gay Revolution|last=Carter|first=David|publisher=St. Martin's|year=2004|isbn=0-312-20025-0|pages=61|url-access=registration}}</ref> مارشا پي جانسن بعد ۾ هڪ ويجهي دوست سلويا رويرا سان گڏ اسٽريٽ ٽرانسويسٽ ايڪشن ريووليوشنريز (اسٽار) جو گڏيل بنياد رکيو. ٽرانز جي چوڌاري رويرا جي شروعاتي وصفون تمام وسيع هيون، جن ۾ سڀني صنفي غير موافقت وارا ماڻهو شامل آهن. <ref name="TWF">Feinberg, Leslie (1996) ''[[ٹرانس جینڈر جنگجو|Transgender Warriors: Making History]]''. </ref> رويرا ٽرانس رائيٽس جي وکالت جاري رکي، ۽ 2002 ۾ سندس موت تائين، سڀني LGBT حقن جي قانون سازي ۾ ٽرانس ماڻهن لاءِ تحفظ شامل آهي. <ref name="StonewallMyths">{{حوالو ويب|url=https://www.gaycitynews.nyc/stories/2019/15/david-carter-stonewall-2019-06-27-gcn.html|title=Exploding the Myths of Stonewall|last=Carter, David|date=June 27, 2019|archive-url=https://web.archive.org/web/20190628192633/https://www.gaycitynews.nyc/stories/2019/15/david-carter-stonewall-2019-06-27-gcn.html|archive-date=June 28, 2019|access-date=June 29, 2019}}</ref> 1980 جي ڏهاڪي ۾، عورت کان مرد (FTM) ٽرانس جنسيت وڌيڪ وڏي پيماني تي مشهور ٿي وئي. <ref name="glbtq2">{{حوالو ويب|url=http://www.glbtq.com/social-sciences/transgender_activism,3.html|title=>> social sciences >> Transgender Activism|publisher=glbtq|access-date=2009-11-05}}</ref> 1992 ۾، ليسلي فينبرگ هڪ پمفليٽ ڇپائي ۽ ورهايو جنهن جو عنوان هو "ٽرانس جينڈر لبريشن: هڪ تحريڪ جنهن جو وقت اچي ويو آهي." فينبرگ جو پمفليٽ ٽرانس ڪميونٽي کي سڏڻ سان شروع ٿئي ٿو ته هو پنهنجون وصفون ٺاهي، ٻولي کي هڪ اوزار طور استعمال ڪري ٿو جيڪو ماڻهن کي متحد ڪري ٿو ظلم کان ورهايل. هتان کان، فينبرگ حڪمران طبقي طرفان ادارن جي استعمال سان مسلط ڪيل ظلمن جي ابتڙ کي نشانو بڻائيندو آهي. اهي اشراڪ هلائيندڙ ادارا صنفي بائنري کي لاڳو ڪن ٿا ڪميونٽي سوسائٽين جي خرچ تي جيڪي آزاد صنف جي اظهار جي حوصلا افزائي ڪن ٿا. پدرشاهي معاشي استحقاق کي فروغ ڏيڻ لاءِ عورتن جي قدر ڪئي وئي ۽ عورتيت کي بدنام ڪيو ويو. فينبرگ جي مطابق، صنف بائنري مغربي تمدن جي هڪ محرڪ قوت آهي. هن کي تسليم ڪندي، فينبرگ سڀني انسانن کي حوصلا افزائي ڪري ٿو ته صنف جي اظهار جي قدرتي تسلسل کي ٻيهر حاصل ڪرڻ لاء جيڪي ماڻهو مقدس طور سڃاڻندا آهن. فينبرگ اهو نتيجو اخذ ڪري ٿو ته پورهيت طبقي کي پاڻ کي حڪمران طبقي کان آزاد ڪرڻ لاءِ بااختيار بڻائي، جيڪو پسمانده گروهه جي مزدورن کي انقلاب جي گڏيل مقصد ڏانهن سڌو ڪرڻ سان حاصل ڪري سگهجي ٿو. <ref>{{ڪتابن مان حوالا|title=Transgender Liberation: A Movement Whose Time Has Come|last=Feinberg|first=Leslie|date=1992|publisher=World View Forum}}</ref> == حوالا == {{حوالو}} [[زمرو:تحريڪون]] [[زمرو:سماجي سرگرميون]] 44d218zyg4yqwf56twmu12zx6ebji8f زمرو:ٽيڪسانومي (حياتيات) 14 79938 322487 293355 2025-07-10T12:09:04Z Ibne maryam 17680 322487 wikitext text/x-wiki {{portal|حياتيات}} {{Category diffuse}} {{Commons}} {{Cat main|ٽيڪسانومي|article=ٽيڪسانومي}} [[Category:Biological classification]] [[Category:Branches of biology]] [[Category:Taxonomy|Biology]] [[زمرو:حياتيات]] [[زمرو:ٽيڪسانومي]] [[زمرو:سائنسي درجه بندي]] [[زمرو:علم حياتيات جون شاخون]] 2qj6a01lge0ubtbyujzelwboxwistiy 322494 322487 2025-07-10T12:19:23Z Ibne maryam 17680 322494 wikitext text/x-wiki {{portal|حياتيات}} {{Category diffuse}} {{Commons}} {{Cat main|ٽيڪسانومي|article=ٽيڪسانومي}} [[Category:Biological classification]] [[Category:Branches of biology]] [[Category:Taxonomy|Biology]] [[زمرو:حياتيات]] [[زمرو:ٽيڪسانومي]] [[زمرو:سائنسي درجه بندي]] [[زمرو:علم حياتيات جون شاخون]] [[زمرو:درجابندي نظام بلحاظ موضوع]] rlqdo6raxtpv97cy6k9bh69ks69slxm جانورن جي روين جو علم 0 83328 322548 321703 2025-07-11T05:46:35Z KaleemBot 10779 خودڪار: [[زمرو:ارتقائي حياتيات]] جو اضافو + ترتيب 322548 wikitext text/x-wiki '''جانورن جي رويي جو علم''' (Ethology)، علم حيوانات جي هڪ شاخ آهي جيڪا انسانن کان سواء ٻين جانورن جي رويي جو مطالعي تي ڌيان ڏئي ٿو. ان جون سائنسي پاڙون چارلس ڊارون جي ڪم ۽ 19هين صدي جي آخر ۽ 20هين صدي جي شروعات ۾ آمريڪي ۽ جرمن پکين جي ماهرن جن ۾ چارلس او. وٽمن، آسڪر هينروٿ ۽ واليس ڪريگ شامل آهن، جي ڪمن ۾ آهن. هن جي جديد نظم جي شروعات، ولنديزي حياتيات دان نڪولاس ٽينبرگن ۽ آسٽريائي حياتيات دان ڪونراڊ لورينز ۽ ڪارل وون فريش، جيڪا 1973ع ۾ طب ۾ نوبل انعام جا فاتح هئا جي ڪم سان ٿي. اخلاقيات ليبارٽري ۽ فيلڊ سائنس کي گڏ ڪري ٿي، جنهن جو نيورو اناٽمي، ماحوليات ۽ ارتقائي حياتيات سان مضبوط تعلق آهي. ==اشتقاق== ==تاريخ== ==رويي جا تعين ڪندڙ== ==ملڻ ۽ بالادستي لاءِ جنگ== ==سماجي رويو== ==ٽنبرگن جا چار سوال== ==پڻ ڏسو== ==ٻاهريان ڳنڍڻا== * {{Commonscatinline|Ethology}} {{Authority control}} [[Category:Subfields of zoology|Ethology]] <!-- Overcatting... picked up by behavioural sciences [[Category:Behavior]]--> ==حوالا== {{حوالا}} [[زمرو:ارتقائي حياتيات]] [[زمرو:ايٿالاجي]] [[زمرو:حيوانيات]] [[زمرو:حيواني رويا]] [[زمرو:رويا]] [[زمرو:علم حيوانات جون شاخون]] opbnobvtwxq6p46ybfm3at3ppkafnz0 زمرو:سائنسي پيشا 14 83365 322563 321944 2025-07-11T09:14:42Z Ibne maryam 17680 322563 wikitext text/x-wiki {{Commons category|Science occupations}} {{further|Outline of science#Branches of science}} {{category explanation|types of occupations within or relating to the sciences; it is not meant for the various fields and sub-fields of science, which are grouped under [[:Category:Scientists]]}} [[Category:Occupations by type]] [[Category:Science|occupations]] [زمرو:سائنس]] [[زمرو:پيشا بلحاظ قسم]] jm1c2mq9cgjyd8hblqzduk2dmo17s3k 322564 322563 2025-07-11T09:16:05Z Ibne maryam 17680 322564 wikitext text/x-wiki {{Commons category|Science occupations}} {{further|Outline of science#Branches of science}} {{category explanation|types of occupations within or relating to the sciences; it is not meant for the various fields and sub-fields of science, which are grouped under [[:Category:Scientists]]}} [[زمرو:سائنس]] [[زمرو:پيشا بلحاظ قسم]] 4tuf98moa7co187gd7uec5lr43l1vxj 322567 322564 2025-07-11T09:39:58Z Ibne maryam 17680 322567 wikitext text/x-wiki {{Commons category|Science occupations}} {{further|Outline of science#Branches of science}} {{category explanation|types of occupations within or relating to the sciences; it is not meant for the various fields and sub-fields of science, which are grouped under [[:Category:Scientists]]}} ذيلي زمرا: * زمرو: سماجي سائنس جا پيشا * زمرو: فارينسڪ سائنس جا پيشا * زمرو: رياضياتي سائنس جا پيشا صفحا: * سائنسدان * خلائي باز * * ماهر فلڪيات جو ماهر * بايوڪيمسٽ * بايوميڊيڪل سائنسدان * ڪيميادان * معاشيات جا ماهر * آباديات جا ماهر * سائنس جا تعليمي ماهر * انجنيئر * جينيٽڪسٽ * جاگرافيدان * جيوگرافر * جيوگرافر * صحت جو سائنسدان * آزاد سائنسدان * موسميات جو ماهر * مائڪروبائيولوجسٽ * نيورو سائنسدان * طبيب-سائنسدان * طبيب-ماهر * طبيب-ماهر * سياسي معاشيات دان * اسڪول سائنس استاد * سائنس تعليم جا عملدار * ٽيڪنيشن * آتش فشاني ماهر * وائرولوجسٽ. [[زمرو:سائنس]] [[زمرو:پيشا بلحاظ قسم]] q83tm68pydcdmus2v79dpwu0r2g0u3g 322568 322567 2025-07-11T09:51:16Z Ibne maryam 17680 322568 wikitext text/x-wiki {{Commons category|Science occupations}} {{further|Outline of science#Branches of science}} {{category explanation|types of occupations within or relating to the sciences; it is not meant for the various fields and sub-fields of science, which are grouped under [[:Category:Scientists]]}} ذيلي زمرا: * [[:زمرو:سماجي سائنس جا پيشا]] * [[:زمرو:فارينسڪ سائنس جا پيشا]] * [[:زمرو:رياضياتي سائنس جا پيشا]] صفحا: * [[سائنسدان]] * [[خلائي باز]] * [[ماهر فلڪيات]] * [[بايوڪيمسٽ]] * [[بايوميڊيڪل سائنسدان]] * [[ڪيميادان]] * [[معاشيات جا ماهر]] * [[آباديات جا ماهر]] * [[ماهر تعليم]] * [[انجنيئر]] * [[ماهر جينياتيات]] * [[جاگرافيدان]] * [[جيوگرافر]] * [[نقشا نويس]] * [[هيلٿ سائنس جا ماهر]] * [[آزاد سائنسدان]] * [[ماهر موسميات]] * [[مائڪروبائيولوجسٽ]] * [[ماهر زراعت]] * [[نيوروسائنس جا ماهر]] * [[طبي سائنسدان]] * [[طبيب]] * [[طبيعيات دان]] * [[ٽيڪنيشيئن]] * [[وائرولوجسٽ]] [[زمرو:سائنس]] [[زمرو:پيشا بلحاظ قسم]] ndkfmb88uimvnscu71g2z0bdlnrtvig زمرو:سائنسي درجه بندي 14 83370 322486 321949 2025-07-10T12:05:48Z Ibne maryam 17680 322486 wikitext text/x-wiki {{Commons category}} {{Cat main|Scientific classification}} [[Category:Science|Classif]] [[Category:Classification systems by subject]] [[زمرو:سائنس]] [[زمرو:سائنس|جماعت بندي]] [[زمرو:موضوع جي لحاظ کان جماعت بندي جا نظام]] 1nw660eaymeqhkxofpyzmytd8wgreo4 322488 322486 2025-07-10T12:10:02Z Ibne maryam 17680 322488 wikitext text/x-wiki {{Commons category}} {{Cat main|Scientific classification}} [[Category:Science|Classif]] [[Category:Classification systems by subject]] [[زمرو:سائنس]] [[زمرو:درجابندي]] [[زمرو:موضوع جي لحاظ کان جماعت بندي جا نظام]] o74x6pgg185qyzjhko5y6wttviawu9c 322490 322488 2025-07-10T12:13:53Z Ibne maryam 17680 322490 wikitext text/x-wiki {{Commons category}} {{Cat main|Scientific classification}} [[Category:Science|Classif]] [[Category:Classification systems by subject]] [[زمرو:سائنس]] [[زمرو:درجابندي نظام]] [[زمرو:موضوع جي لحاظ کان جماعت بندي جا نظام]] suwjppsys934vb03z8lfnat0woxl3aj 322492 322490 2025-07-10T12:17:04Z Ibne maryam 17680 322492 wikitext text/x-wiki {{Commons category}} {{Cat main|Scientific classification}} [[Category:Science|Classif]] [[Category:Classification systems by subject]] [[زمرو:سائنس]] [[زمرو:درجابندي نظام]] [[[[زمرو:درجابندي جا نظام بلحاظ موضوع]] [[زمرو:موضوع جي لحاظ کان جماعت بندي جا نظام]] 4who3vxyyyua007jbvj3cw1vzwg5bno 322493 322492 2025-07-10T12:18:35Z Ibne maryam 17680 322493 wikitext text/x-wiki {{Commons category}} {{Cat main|Scientific classification}} [[Category:Science|Classif]] [[Category:Classification systems by subject]] [[زمرو:سائنس]] [[زمرو:درجابندي نظام]] [[زمرو:درجابندي نظام بلحاظ موضوع]] gc887u1o9dugj00258ixt23cp049e8q زمرو:ڪيميائي درجه بندي 14 83447 322489 2025-07-10T12:11:51Z Ibne maryam 17680 نئون صفحو: [[زمرو:درجابندي]] [[زمرو:سائنسي موضوع]] 322489 wikitext text/x-wiki [[زمرو:درجابندي]] [[زمرو:سائنسي موضوع]] shemdi2p08c5so0awrpiwtwcl8vebnp 322491 322489 2025-07-10T12:14:38Z Ibne maryam 17680 322491 wikitext text/x-wiki [[زمرو:درجابندي نظام]] [[زمرو:سائنسي موضوع]] ss2vr5rj9zzjg92snm1mo80iskll1cr 322495 322491 2025-07-10T12:22:39Z Ibne maryam 17680 Ibne maryam صفحي [[زمرو:موضوع جي لحاظ کان جماعت بندي جا نظام]] کي [[زمرو:ڪيميائي درجه بندي]] ڏانھن چوريو 322491 wikitext text/x-wiki [[زمرو:درجابندي نظام]] [[زمرو:سائنسي موضوع]] ss2vr5rj9zzjg92snm1mo80iskll1cr 322497 322495 2025-07-10T12:23:27Z Ibne maryam 17680 322497 wikitext text/x-wiki [[زمرو:ڪيميا]] [[زمرو:سائنسي درجه بندي]] dvyawedn4la3mt9izbscpod4g14953p زمرو:موضوع جي لحاظ کان جماعت بندي جا نظام 14 83448 322496 2025-07-10T12:22:39Z Ibne maryam 17680 Ibne maryam صفحي [[زمرو:موضوع جي لحاظ کان جماعت بندي جا نظام]] کي [[زمرو:ڪيميائي درجه بندي]] ڏانھن چوريو 322496 wikitext text/x-wiki {{واپس منتقل زمرو|زمرو:ڪيميائي درجه بندي}} 4zzxx8qzq0wicrawngj85blwdr0xa7e شيوانگي جوشي 0 83449 322549 2025-07-11T05:52:44Z Radi7890 20582 صفحي "[[:en:Special:Redirect/revision/1296021923|Shivangi Joshi]]" کي ترجمو ڪري سرجيل 322549 wikitext text/x-wiki {{ڄاڻخانو شخصيت|name=Shivangi Joshi|image=File:Shivangi-Joshi-attend-the-press-meet-for-the-show-Khatron-Ke-Khilad-12.jpg|caption=Joshi in 2022|birth_date=|birth_place=[[Pune]], Maharashtra, India|occupation=Actress|years active=2013–present|known for=''[[Begusarai (TV series)|Begusarai]]''<br/>''[[Yeh Rishta Kya Kehlata Hai]]''<br/> ''[[Balika Vadhu 2]]'' <br/>''[[Fear Factor: Khatron Ke Khiladi 12|Khatron Ke Khiladi 12]]''<br/>''[[Barsatein – Mausam Pyaar Ka]]''|awards=[[List of awards and nominations received by Shivangi Joshi|Full list]]|signature=}} '''شوانگي جوشي''' هڪ هندستاني اداڪاره آهي جيڪا بنيادي طور تي [[ھندي|هندي]] ٽيليويزن ۾ ڪم ڪري ٿي. هن پنهنجي ٽيليويزن ڪيريئر جي شروعات ''پرواريش - ڪجهه کٽي ڪجهه ميٺي'' ۾ هڪ مختصر ڪردار سان ڪئي ۽ بعد ۾ هن پنهنجي مڪمل اداڪاري جي شروعات 2013 ۾ ''ڪليتي هي زندگي آنڪ ميچولي'' سان ٽريشا جي روپ ۾ ڪئي. جوشي ''يه رشتا ڪيو ڪيهلاتا هي'' ۾ نيرا سنگانيا گوينڪا جي ڪردار لاءِ مشهور آهي. <ref name=":0">{{Cite news|url=https://timesofindia.indiatimes.com/tv/news/hindi/shivangi-joshi-makes-a-strong-comeback-as-a-boxer-in-yeh-rishta-kya-kehlata-hai-see-motion-poster/articleshow/80286809.cms|title=Shivangi Joshi makes a strong comeback as a boxer in Yeh Rishta Kya Kehlata Hai|date=15 January 2021|work=The Times of India|access-date=17 August 2024}}</ref> هندستان ۾ سڀ کان وڌيڪ معاوضو وٺندڙ ٽيليويزن اداڪارائن مان هڪ، <ref name=":1">{{حوالو ويب|url=https://www.dnaindia.com/web-stories/entertainment/television/india-10-highest-paid-television-actresses-1707378046293|title=Highest Paid Television Actresses|date=12 August 2023|website=DNA India|language=en|access-date=12 August 2024}}</ref> هوءَ ڪيترن ئي اعزازن جي وصول ڪندڙ آهي جنهن ۾ هڪ ITA ايوارڊ ، ۽ ٽي گولڊ ايوارڊ شامل آهن. <ref>{{حوالو ويب|url=https://www.pinkvilla.com/stories/entertainment/10-facts-about-kkk12-star-shivangi-joshi-1148098|title=Check out 10 facts about television star Shivangi Joshi|date=22 June 2022|website=Pinkvilla|access-date=18 July 2022}}</ref> جوشي پنهنجي اداڪاري ڪيريئر جي شروعات ''پروواريش - ڪڇ کٽي ڪڇ ميٿي'' ۾ ڪيميو سان ڪئي ۽ هن پنهنجي صحيح اداڪاري جي شروعات ڪئي جيڪا 2013 ۾ ''ڪلهي هي زندگي آنڪ ميچولي'' ۾ ٽريشا جو ڪردار ادا ڪيو. بعد ۾ هن ''بيانتها'' (2013-2013) ۾ عيت حيدر، ''بيگوسرائي'' (2015-2016) ۾ پونم ٿڪر جو ڪردار ادا ڪيو، ان کان علاوه هن کي ''يه رشتا ڪيهلاتا هي'' (2016-2021) ۾ نيرا سنگانيا گوينڪا جي ڪردار لاءِ نئين سڃاڻپ ملي، جنهن لاءِ کيس بهترين اداڪارا جو ايوارڊ مليو. ان کان پوءِ هن ''باليڪا ودو 2'' (2021-2022) ۾ آنندي چترويدي جو ڪردار ادا ڪيو، ارڌانا ساهني کي ''بارساتين - موسم پيار ڪا'' (2023-2024) ۾ ۽ ''بيدي اچه لگتي هين 4'' (2025) ۾ ڀگياشري جو ڪردار ادا ڪرڻ لاءِ تيار آهي. == فلموگرافي == === ٽيليويزن === == حوالا == {{حوالو}}{{Subject bar}} [[زمرو:1998ع جون پيدائشون]] [[زمرو:جيوت ماڻهو]] riv4po0pl626pko066ebatvo612g5zi 322550 322549 2025-07-11T05:53:13Z Radi7890 20582 /* فلموگرافي */ 322550 wikitext text/x-wiki {{ڄاڻخانو شخصيت|name=Shivangi Joshi|image=File:Shivangi-Joshi-attend-the-press-meet-for-the-show-Khatron-Ke-Khilad-12.jpg|caption=Joshi in 2022|birth_date=|birth_place=[[Pune]], Maharashtra, India|occupation=Actress|years active=2013–present|known for=''[[Begusarai (TV series)|Begusarai]]''<br/>''[[Yeh Rishta Kya Kehlata Hai]]''<br/> ''[[Balika Vadhu 2]]'' <br/>''[[Fear Factor: Khatron Ke Khiladi 12|Khatron Ke Khiladi 12]]''<br/>''[[Barsatein – Mausam Pyaar Ka]]''|awards=[[List of awards and nominations received by Shivangi Joshi|Full list]]|signature=}} '''شوانگي جوشي''' هڪ هندستاني اداڪاره آهي جيڪا بنيادي طور تي [[ھندي|هندي]] ٽيليويزن ۾ ڪم ڪري ٿي. هن پنهنجي ٽيليويزن ڪيريئر جي شروعات ''پرواريش - ڪجهه کٽي ڪجهه ميٺي'' ۾ هڪ مختصر ڪردار سان ڪئي ۽ بعد ۾ هن پنهنجي مڪمل اداڪاري جي شروعات 2013 ۾ ''ڪليتي هي زندگي آنڪ ميچولي'' سان ٽريشا جي روپ ۾ ڪئي. جوشي ''يه رشتا ڪيو ڪيهلاتا هي'' ۾ نيرا سنگانيا گوينڪا جي ڪردار لاءِ مشهور آهي. <ref name=":0">{{Cite news|url=https://timesofindia.indiatimes.com/tv/news/hindi/shivangi-joshi-makes-a-strong-comeback-as-a-boxer-in-yeh-rishta-kya-kehlata-hai-see-motion-poster/articleshow/80286809.cms|title=Shivangi Joshi makes a strong comeback as a boxer in Yeh Rishta Kya Kehlata Hai|date=15 January 2021|work=The Times of India|access-date=17 August 2024}}</ref> هندستان ۾ سڀ کان وڌيڪ معاوضو وٺندڙ ٽيليويزن اداڪارائن مان هڪ، <ref name=":1">{{حوالو ويب|url=https://www.dnaindia.com/web-stories/entertainment/television/india-10-highest-paid-television-actresses-1707378046293|title=Highest Paid Television Actresses|date=12 August 2023|website=DNA India|language=en|access-date=12 August 2024}}</ref> هوءَ ڪيترن ئي اعزازن جي وصول ڪندڙ آهي جنهن ۾ هڪ ITA ايوارڊ ، ۽ ٽي گولڊ ايوارڊ شامل آهن. <ref>{{حوالو ويب|url=https://www.pinkvilla.com/stories/entertainment/10-facts-about-kkk12-star-shivangi-joshi-1148098|title=Check out 10 facts about television star Shivangi Joshi|date=22 June 2022|website=Pinkvilla|access-date=18 July 2022}}</ref> جوشي پنهنجي اداڪاري ڪيريئر جي شروعات ''پروواريش - ڪڇ کٽي ڪڇ ميٿي'' ۾ ڪيميو سان ڪئي ۽ هن پنهنجي صحيح اداڪاري جي شروعات ڪئي جيڪا 2013 ۾ ''ڪلهي هي زندگي آنڪ ميچولي'' ۾ ٽريشا جو ڪردار ادا ڪيو. بعد ۾ هن ''بيانتها'' (2013-2013) ۾ عيت حيدر، ''بيگوسرائي'' (2015-2016) ۾ پونم ٿڪر جو ڪردار ادا ڪيو، ان کان علاوه هن کي ''يه رشتا ڪيهلاتا هي'' (2016-2021) ۾ نيرا سنگانيا گوينڪا جي ڪردار لاءِ نئين سڃاڻپ ملي، جنهن لاءِ کيس بهترين اداڪارا جو ايوارڊ مليو. ان کان پوءِ هن ''باليڪا ودو 2'' (2021-2022) ۾ آنندي چترويدي جو ڪردار ادا ڪيو، ارڌانا ساهني کي ''بارساتين - موسم پيار ڪا'' (2023-2024) ۾ ۽ ''بيدي اچه لگتي هين 4'' (2025) ۾ ڀگياشري جو ڪردار ادا ڪرڻ لاءِ تيار آهي. == حوالا == {{حوالو}}{{Subject bar}} [[زمرو:1998ع جون پيدائشون]] [[زمرو:جيوت ماڻهو]] seksxk20or2y93mzu3n4e2httgbql5o 322551 322550 2025-07-11T05:53:43Z Radi7890 20582 322551 wikitext text/x-wiki {{ڄاڻخانو شخصيت|name=Shivangi Joshi|image=Shivangi-Joshi-attend-the-press-meet-for-the-show-Khatron-Ke-Khilad-12.jpg|caption=Joshi in 2022|birth_date=|birth_place=[[Pune]], Maharashtra, India|occupation=Actress|years active=2013–present|known for=|awards=[[List of awards and nominations received by Shivangi Joshi|Full list]]|signature=}} '''شوانگي جوشي''' هڪ هندستاني اداڪاره آهي جيڪا بنيادي طور تي [[ھندي|هندي]] ٽيليويزن ۾ ڪم ڪري ٿي. هن پنهنجي ٽيليويزن ڪيريئر جي شروعات ''پرواريش - ڪجهه کٽي ڪجهه ميٺي'' ۾ هڪ مختصر ڪردار سان ڪئي ۽ بعد ۾ هن پنهنجي مڪمل اداڪاري جي شروعات 2013 ۾ ''ڪليتي هي زندگي آنڪ ميچولي'' سان ٽريشا جي روپ ۾ ڪئي. جوشي ''يه رشتا ڪيو ڪيهلاتا هي'' ۾ نيرا سنگانيا گوينڪا جي ڪردار لاءِ مشهور آهي. <ref name=":0">{{Cite news|url=https://timesofindia.indiatimes.com/tv/news/hindi/shivangi-joshi-makes-a-strong-comeback-as-a-boxer-in-yeh-rishta-kya-kehlata-hai-see-motion-poster/articleshow/80286809.cms|title=Shivangi Joshi makes a strong comeback as a boxer in Yeh Rishta Kya Kehlata Hai|date=15 January 2021|work=The Times of India|access-date=17 August 2024}}</ref> هندستان ۾ سڀ کان وڌيڪ معاوضو وٺندڙ ٽيليويزن اداڪارائن مان هڪ، <ref name=":1">{{حوالو ويب|url=https://www.dnaindia.com/web-stories/entertainment/television/india-10-highest-paid-television-actresses-1707378046293|title=Highest Paid Television Actresses|date=12 August 2023|website=DNA India|language=en|access-date=12 August 2024}}</ref> هوءَ ڪيترن ئي اعزازن جي وصول ڪندڙ آهي جنهن ۾ هڪ ITA ايوارڊ ، ۽ ٽي گولڊ ايوارڊ شامل آهن. <ref>{{حوالو ويب|url=https://www.pinkvilla.com/stories/entertainment/10-facts-about-kkk12-star-shivangi-joshi-1148098|title=Check out 10 facts about television star Shivangi Joshi|date=22 June 2022|website=Pinkvilla|access-date=18 July 2022}}</ref> جوشي پنهنجي اداڪاري ڪيريئر جي شروعات ''پروواريش - ڪڇ کٽي ڪڇ ميٿي'' ۾ ڪيميو سان ڪئي ۽ هن پنهنجي صحيح اداڪاري جي شروعات ڪئي جيڪا 2013 ۾ ''ڪلهي هي زندگي آنڪ ميچولي'' ۾ ٽريشا جو ڪردار ادا ڪيو. بعد ۾ هن ''بيانتها'' (2013-2013) ۾ عيت حيدر، ''بيگوسرائي'' (2015-2016) ۾ پونم ٿڪر جو ڪردار ادا ڪيو، ان کان علاوه هن کي ''يه رشتا ڪيهلاتا هي'' (2016-2021) ۾ نيرا سنگانيا گوينڪا جي ڪردار لاءِ نئين سڃاڻپ ملي، جنهن لاءِ کيس بهترين اداڪارا جو ايوارڊ مليو. ان کان پوءِ هن ''باليڪا ودو 2'' (2021-2022) ۾ آنندي چترويدي جو ڪردار ادا ڪيو، ارڌانا ساهني کي ''بارساتين - موسم پيار ڪا'' (2023-2024) ۾ ۽ ''بيدي اچه لگتي هين 4'' (2025) ۾ ڀگياشري جو ڪردار ادا ڪرڻ لاءِ تيار آهي. == حوالا == {{حوالو}}{{Subject bar}} [[زمرو:1998ع جون پيدائشون]] [[زمرو:جيوت ماڻهو]] pp9poti3vg3zvdyl3xyqwg8ngdh2uem واپرائيندڙ بحث:Monster Iestyn 3 83450 322576 2025-07-11T10:42:32Z KaleemBot 10779 ڀليڪار! 322576 wikitext text/x-wiki {{سانچو:سماجي ڳنڍڻن تي سنڌي وڪيپيڊيا}} <div style="padding:5px;font-size:medium"><center style="word-spacing:1ex">[[Wikipedia:سفارتخانو|سفارتخاني جي صفحي تي پنھنجون سفارشون ڏيو]] </center></div> {| bgcolor="#ADDFAD" align=center style="width:100% !important; -moz-border-radius: 1em;-webkit-border-radius:1em;border-radius:1em; border-top:2px dashed #3eb2c9;border-bottom:2px dashed #3eb2c9;padding: 5px 20px 25px;" |<span style="font-family:MB Lateefi;float:left">'''[[Wikipedia:سفارتخانو|سفارتخانو]]'''</span> <div class="tabber horizTabBox" style="width: 100% !important;"> [[عڪس:Wikipedia laurier wp.png|left|200px]] <center><big>'''بزمِ سنڌي وڪيپيڊيا ۾ ڀلي ڪري آيا''' ''{{PAGENAME}}'''</big></center>'' '''السلام عليڪم! اسان اميد ڪريون ٿا تہ توھان سنڌي وڪيپيڊيا جي لاء بھترين اضافو ثابت ٿيندئو'''.<br> * وڪيپيڊيا ھڪ کليل ڄاڻ چيڪلو آھي جنھن کي اسان سڀ ملي ڪري لکندا ۽ سنواريندا آھيون. وڪيپيڊيا منصوبي جي شروعات جنوري 2001ع ۾ ٿي، جڏھن تہ سنڌي وڪيپيڊيا فيبروري 2006ع ۾ عمل آئي. في الحال ھن وڪيپيڊيا ۾ '''{{NUMBEROFARTICLES}}''' [[Special:Allpages|مضمون]] موجود آھن.<br /> * ھن چيڪلي (انسائيڪلوپيڊيا) ۾ توھان مضمون نويسي، سنوار ۽ تصحيح کان پھريان ھيٺين صفحن تي ضرور نظر وجھو.''' * صفحن جي ظاھريت جي تبديلي ۽ طریقيڪار جي لاءِ ڏسو '''[[خاص:ترجيحات|ترجيحون]]'''. <Font - size=4> '''اصول ۽ قاعدا''' </Font - size> <Font - size=3> '''توھان جو واپرائيندڙ ۽ بحث صفحو''' </Font - size><br> ھتي توھانجو [[خاص:Mypage|'''مخصوص واپرائيندڙ صفحو بہ ھوندو''']] جتي توھان [[:زمرو:يوزر سانچا|پنھنجو تعارف لکي سگھو ٿا]]، ۽ توهانجي [[خاص:Mytalk|واپرائيندڙ بحث]] تي ٻيا رڪنَ توھان سان رابطو ڪري سگھن ٿا ۽ توھان ڏي پيغام موڪلي سگھن ٿا. * '''ڪنھن ٻئي رڪن کي پيغام موڪلڻ وقت ھنن امرن جو خاص خيال رکو''': ** '''جيڪڏھن ضرورت هجي تہ پيغام کي عنوان ضرور ڏيو'''. ** '''پيغام جي آخر ۾ پنهنجي صحيح ضرور وجھو، ان جي لاءِ هي علامت درج ڪريو'''--&#126;&#126;&#126;&#126;''' يا ھن ([[عڪس:Insert-signature.png|link=]]) بٽڻ تي ٽڙڪ ڪريو'''. ** '''[[Wikipedia:اصول بحث|اظھار بحث جي آدابن]] جو خصوصي خيال رکو'''. <Font - size=3> '''تعاون''' </Font - size> * '''وڪيپيڊيا جي ڪنھن بہ صفحي جي سڄي پاسي ڳوليو جو خانو نظر ايندو آھي. جنھن موضوع تي مضمون ٺاھڻ چاھيو تہ ڳوليو جي خاني ۾ لکو، ۽ ڳوليو تي ٽڙڪ ڪريو'''. <inputbox>type=search</inputbox> * '''توھان جي موضوع سان ملندڙ جلندڙ صفحا نظر ايندا. اھو اطمينان ڪرڻ کان پوء تہ توھان جي گهربل موضوع تي پھريان کان مضمون موجود ناھي، توھان نئون صفحو ٺاھي سگھو ٿا واضع هجي تہ ھڪ موضوع تي ھڪ کان وڌيڪ مضمون ٺاھڻ جي اجازت ناھي. توھان ھيٺ ڏنل خانو بہ استعمال ڪري سگھو ٿا'''. <inputbox>type=create</inputbox> * '''لکڻ کان پهرئين ھن ڳالھ جو يقين ڪريو تہ جنھن عنوان تي توھان لکي رھيا آھيو ان تي يا ان سان ملندڙ عنوانن تي وڪي ۾ ڪوئي مضمون نہ ھجي. ان جي لاء توھان ڳوليو جي خاني ۾ عنوان ۽ ان جا هم معنيٰ لفظ (اهڙا لفظ جن جي معني هڪ هجي) لکي ڳولا ڪريو'''.</center> |} -- توھان جي مدد جي لاء ھر وقت حاضر، اوهان جو خادم --[[واپرائيندڙ:KaleemBot|KaleemBot]] ([[واپرائيندڙ بحث:KaleemBot|ڳالھ]]) 10:42, 11 جُولاءِ 2025 ( يو.ٽي.سي) io8mbnay3mmvr0c9kbqvbgpjtmg8q16 واپرائيندڙ بحث:Radi7890 3 83451 322577 2025-07-11T10:42:52Z KaleemBot 10779 ڀليڪار! 322577 wikitext text/x-wiki {{سانچو:سماجي ڳنڍڻن تي سنڌي وڪيپيڊيا}} <div style="padding:5px;font-size:medium"><center style="word-spacing:1ex">[[Wikipedia:سفارتخانو|سفارتخاني جي صفحي تي پنھنجون سفارشون ڏيو]] </center></div> {| bgcolor="#ADDFAD" align=center style="width:100% !important; -moz-border-radius: 1em;-webkit-border-radius:1em;border-radius:1em; border-top:2px dashed #3eb2c9;border-bottom:2px dashed #3eb2c9;padding: 5px 20px 25px;" |<span style="font-family:MB Lateefi;float:left">'''[[Wikipedia:سفارتخانو|سفارتخانو]]'''</span> <div class="tabber horizTabBox" style="width: 100% !important;"> [[عڪس:Wikipedia laurier wp.png|left|200px]] <center><big>'''بزمِ سنڌي وڪيپيڊيا ۾ ڀلي ڪري آيا''' ''{{PAGENAME}}'''</big></center>'' '''السلام عليڪم! اسان اميد ڪريون ٿا تہ توھان سنڌي وڪيپيڊيا جي لاء بھترين اضافو ثابت ٿيندئو'''.<br> * وڪيپيڊيا ھڪ کليل ڄاڻ چيڪلو آھي جنھن کي اسان سڀ ملي ڪري لکندا ۽ سنواريندا آھيون. وڪيپيڊيا منصوبي جي شروعات جنوري 2001ع ۾ ٿي، جڏھن تہ سنڌي وڪيپيڊيا فيبروري 2006ع ۾ عمل آئي. في الحال ھن وڪيپيڊيا ۾ '''{{NUMBEROFARTICLES}}''' [[Special:Allpages|مضمون]] موجود آھن.<br /> * ھن چيڪلي (انسائيڪلوپيڊيا) ۾ توھان مضمون نويسي، سنوار ۽ تصحيح کان پھريان ھيٺين صفحن تي ضرور نظر وجھو.''' * صفحن جي ظاھريت جي تبديلي ۽ طریقيڪار جي لاءِ ڏسو '''[[خاص:ترجيحات|ترجيحون]]'''. <Font - size=4> '''اصول ۽ قاعدا''' </Font - size> <Font - size=3> '''توھان جو واپرائيندڙ ۽ بحث صفحو''' </Font - size><br> ھتي توھانجو [[خاص:Mypage|'''مخصوص واپرائيندڙ صفحو بہ ھوندو''']] جتي توھان [[:زمرو:يوزر سانچا|پنھنجو تعارف لکي سگھو ٿا]]، ۽ توهانجي [[خاص:Mytalk|واپرائيندڙ بحث]] تي ٻيا رڪنَ توھان سان رابطو ڪري سگھن ٿا ۽ توھان ڏي پيغام موڪلي سگھن ٿا. * '''ڪنھن ٻئي رڪن کي پيغام موڪلڻ وقت ھنن امرن جو خاص خيال رکو''': ** '''جيڪڏھن ضرورت هجي تہ پيغام کي عنوان ضرور ڏيو'''. ** '''پيغام جي آخر ۾ پنهنجي صحيح ضرور وجھو، ان جي لاءِ هي علامت درج ڪريو'''--&#126;&#126;&#126;&#126;''' يا ھن ([[عڪس:Insert-signature.png|link=]]) بٽڻ تي ٽڙڪ ڪريو'''. ** '''[[Wikipedia:اصول بحث|اظھار بحث جي آدابن]] جو خصوصي خيال رکو'''. <Font - size=3> '''تعاون''' </Font - size> * '''وڪيپيڊيا جي ڪنھن بہ صفحي جي سڄي پاسي ڳوليو جو خانو نظر ايندو آھي. جنھن موضوع تي مضمون ٺاھڻ چاھيو تہ ڳوليو جي خاني ۾ لکو، ۽ ڳوليو تي ٽڙڪ ڪريو'''. <inputbox>type=search</inputbox> * '''توھان جي موضوع سان ملندڙ جلندڙ صفحا نظر ايندا. اھو اطمينان ڪرڻ کان پوء تہ توھان جي گهربل موضوع تي پھريان کان مضمون موجود ناھي، توھان نئون صفحو ٺاھي سگھو ٿا واضع هجي تہ ھڪ موضوع تي ھڪ کان وڌيڪ مضمون ٺاھڻ جي اجازت ناھي. توھان ھيٺ ڏنل خانو بہ استعمال ڪري سگھو ٿا'''. <inputbox>type=create</inputbox> * '''لکڻ کان پهرئين ھن ڳالھ جو يقين ڪريو تہ جنھن عنوان تي توھان لکي رھيا آھيو ان تي يا ان سان ملندڙ عنوانن تي وڪي ۾ ڪوئي مضمون نہ ھجي. ان جي لاء توھان ڳوليو جي خاني ۾ عنوان ۽ ان جا هم معنيٰ لفظ (اهڙا لفظ جن جي معني هڪ هجي) لکي ڳولا ڪريو'''.</center> |} -- توھان جي مدد جي لاء ھر وقت حاضر، اوهان جو خادم --[[واپرائيندڙ:KaleemBot|KaleemBot]] ([[واپرائيندڙ بحث:KaleemBot|ڳالھ]]) 10:42, 11 جُولاءِ 2025 ( يو.ٽي.سي) io8mbnay3mmvr0c9kbqvbgpjtmg8q16 واپرائيندڙ بحث:004bvan 3 83452 322578 2025-07-11T10:43:12Z KaleemBot 10779 ڀليڪار! 322578 wikitext text/x-wiki {{سانچو:سماجي ڳنڍڻن تي سنڌي وڪيپيڊيا}} <div style="padding:5px;font-size:medium"><center style="word-spacing:1ex">[[Wikipedia:سفارتخانو|سفارتخاني جي صفحي تي پنھنجون سفارشون ڏيو]] </center></div> {| bgcolor="#ADDFAD" align=center style="width:100% !important; -moz-border-radius: 1em;-webkit-border-radius:1em;border-radius:1em; border-top:2px dashed #3eb2c9;border-bottom:2px dashed #3eb2c9;padding: 5px 20px 25px;" |<span style="font-family:MB Lateefi;float:left">'''[[Wikipedia:سفارتخانو|سفارتخانو]]'''</span> <div class="tabber horizTabBox" style="width: 100% !important;"> [[عڪس:Wikipedia laurier wp.png|left|200px]] <center><big>'''بزمِ سنڌي وڪيپيڊيا ۾ ڀلي ڪري آيا''' ''{{PAGENAME}}'''</big></center>'' '''السلام عليڪم! اسان اميد ڪريون ٿا تہ توھان سنڌي وڪيپيڊيا جي لاء بھترين اضافو ثابت ٿيندئو'''.<br> * وڪيپيڊيا ھڪ کليل ڄاڻ چيڪلو آھي جنھن کي اسان سڀ ملي ڪري لکندا ۽ سنواريندا آھيون. وڪيپيڊيا منصوبي جي شروعات جنوري 2001ع ۾ ٿي، جڏھن تہ سنڌي وڪيپيڊيا فيبروري 2006ع ۾ عمل آئي. في الحال ھن وڪيپيڊيا ۾ '''{{NUMBEROFARTICLES}}''' [[Special:Allpages|مضمون]] موجود آھن.<br /> * ھن چيڪلي (انسائيڪلوپيڊيا) ۾ توھان مضمون نويسي، سنوار ۽ تصحيح کان پھريان ھيٺين صفحن تي ضرور نظر وجھو.''' * صفحن جي ظاھريت جي تبديلي ۽ طریقيڪار جي لاءِ ڏسو '''[[خاص:ترجيحات|ترجيحون]]'''. <Font - size=4> '''اصول ۽ قاعدا''' </Font - size> <Font - size=3> '''توھان جو واپرائيندڙ ۽ بحث صفحو''' </Font - size><br> ھتي توھانجو [[خاص:Mypage|'''مخصوص واپرائيندڙ صفحو بہ ھوندو''']] جتي توھان [[:زمرو:يوزر سانچا|پنھنجو تعارف لکي سگھو ٿا]]، ۽ توهانجي [[خاص:Mytalk|واپرائيندڙ بحث]] تي ٻيا رڪنَ توھان سان رابطو ڪري سگھن ٿا ۽ توھان ڏي پيغام موڪلي سگھن ٿا. * '''ڪنھن ٻئي رڪن کي پيغام موڪلڻ وقت ھنن امرن جو خاص خيال رکو''': ** '''جيڪڏھن ضرورت هجي تہ پيغام کي عنوان ضرور ڏيو'''. ** '''پيغام جي آخر ۾ پنهنجي صحيح ضرور وجھو، ان جي لاءِ هي علامت درج ڪريو'''--&#126;&#126;&#126;&#126;''' يا ھن ([[عڪس:Insert-signature.png|link=]]) بٽڻ تي ٽڙڪ ڪريو'''. ** '''[[Wikipedia:اصول بحث|اظھار بحث جي آدابن]] جو خصوصي خيال رکو'''. <Font - size=3> '''تعاون''' </Font - size> * '''وڪيپيڊيا جي ڪنھن بہ صفحي جي سڄي پاسي ڳوليو جو خانو نظر ايندو آھي. جنھن موضوع تي مضمون ٺاھڻ چاھيو تہ ڳوليو جي خاني ۾ لکو، ۽ ڳوليو تي ٽڙڪ ڪريو'''. <inputbox>type=search</inputbox> * '''توھان جي موضوع سان ملندڙ جلندڙ صفحا نظر ايندا. اھو اطمينان ڪرڻ کان پوء تہ توھان جي گهربل موضوع تي پھريان کان مضمون موجود ناھي، توھان نئون صفحو ٺاھي سگھو ٿا واضع هجي تہ ھڪ موضوع تي ھڪ کان وڌيڪ مضمون ٺاھڻ جي اجازت ناھي. توھان ھيٺ ڏنل خانو بہ استعمال ڪري سگھو ٿا'''. <inputbox>type=create</inputbox> * '''لکڻ کان پهرئين ھن ڳالھ جو يقين ڪريو تہ جنھن عنوان تي توھان لکي رھيا آھيو ان تي يا ان سان ملندڙ عنوانن تي وڪي ۾ ڪوئي مضمون نہ ھجي. ان جي لاء توھان ڳوليو جي خاني ۾ عنوان ۽ ان جا هم معنيٰ لفظ (اهڙا لفظ جن جي معني هڪ هجي) لکي ڳولا ڪريو'''.</center> |} -- توھان جي مدد جي لاء ھر وقت حاضر، اوهان جو خادم --[[واپرائيندڙ:KaleemBot|KaleemBot]] ([[واپرائيندڙ بحث:KaleemBot|ڳالھ]]) 10:43, 11 جُولاءِ 2025 ( يو.ٽي.سي) eeql7y464g9gflxq4jbrha7azu2x2h5 واپرائيندڙ بحث:Amarzlfqr 3 83453 322579 2025-07-11T10:43:32Z KaleemBot 10779 ڀليڪار! 322579 wikitext text/x-wiki {{سانچو:سماجي ڳنڍڻن تي سنڌي وڪيپيڊيا}} <div style="padding:5px;font-size:medium"><center style="word-spacing:1ex">[[Wikipedia:سفارتخانو|سفارتخاني جي صفحي تي پنھنجون سفارشون ڏيو]] </center></div> {| bgcolor="#ADDFAD" align=center style="width:100% !important; -moz-border-radius: 1em;-webkit-border-radius:1em;border-radius:1em; border-top:2px dashed #3eb2c9;border-bottom:2px dashed #3eb2c9;padding: 5px 20px 25px;" |<span style="font-family:MB Lateefi;float:left">'''[[Wikipedia:سفارتخانو|سفارتخانو]]'''</span> <div class="tabber horizTabBox" style="width: 100% !important;"> [[عڪس:Wikipedia laurier wp.png|left|200px]] <center><big>'''بزمِ سنڌي وڪيپيڊيا ۾ ڀلي ڪري آيا''' ''{{PAGENAME}}'''</big></center>'' '''السلام عليڪم! اسان اميد ڪريون ٿا تہ توھان سنڌي وڪيپيڊيا جي لاء بھترين اضافو ثابت ٿيندئو'''.<br> * وڪيپيڊيا ھڪ کليل ڄاڻ چيڪلو آھي جنھن کي اسان سڀ ملي ڪري لکندا ۽ سنواريندا آھيون. وڪيپيڊيا منصوبي جي شروعات جنوري 2001ع ۾ ٿي، جڏھن تہ سنڌي وڪيپيڊيا فيبروري 2006ع ۾ عمل آئي. في الحال ھن وڪيپيڊيا ۾ '''{{NUMBEROFARTICLES}}''' [[Special:Allpages|مضمون]] موجود آھن.<br /> * ھن چيڪلي (انسائيڪلوپيڊيا) ۾ توھان مضمون نويسي، سنوار ۽ تصحيح کان پھريان ھيٺين صفحن تي ضرور نظر وجھو.''' * صفحن جي ظاھريت جي تبديلي ۽ طریقيڪار جي لاءِ ڏسو '''[[خاص:ترجيحات|ترجيحون]]'''. <Font - size=4> '''اصول ۽ قاعدا''' </Font - size> <Font - size=3> '''توھان جو واپرائيندڙ ۽ بحث صفحو''' </Font - size><br> ھتي توھانجو [[خاص:Mypage|'''مخصوص واپرائيندڙ صفحو بہ ھوندو''']] جتي توھان [[:زمرو:يوزر سانچا|پنھنجو تعارف لکي سگھو ٿا]]، ۽ توهانجي [[خاص:Mytalk|واپرائيندڙ بحث]] تي ٻيا رڪنَ توھان سان رابطو ڪري سگھن ٿا ۽ توھان ڏي پيغام موڪلي سگھن ٿا. * '''ڪنھن ٻئي رڪن کي پيغام موڪلڻ وقت ھنن امرن جو خاص خيال رکو''': ** '''جيڪڏھن ضرورت هجي تہ پيغام کي عنوان ضرور ڏيو'''. ** '''پيغام جي آخر ۾ پنهنجي صحيح ضرور وجھو، ان جي لاءِ هي علامت درج ڪريو'''--&#126;&#126;&#126;&#126;''' يا ھن ([[عڪس:Insert-signature.png|link=]]) بٽڻ تي ٽڙڪ ڪريو'''. ** '''[[Wikipedia:اصول بحث|اظھار بحث جي آدابن]] جو خصوصي خيال رکو'''. <Font - size=3> '''تعاون''' </Font - size> * '''وڪيپيڊيا جي ڪنھن بہ صفحي جي سڄي پاسي ڳوليو جو خانو نظر ايندو آھي. جنھن موضوع تي مضمون ٺاھڻ چاھيو تہ ڳوليو جي خاني ۾ لکو، ۽ ڳوليو تي ٽڙڪ ڪريو'''. <inputbox>type=search</inputbox> * '''توھان جي موضوع سان ملندڙ جلندڙ صفحا نظر ايندا. اھو اطمينان ڪرڻ کان پوء تہ توھان جي گهربل موضوع تي پھريان کان مضمون موجود ناھي، توھان نئون صفحو ٺاھي سگھو ٿا واضع هجي تہ ھڪ موضوع تي ھڪ کان وڌيڪ مضمون ٺاھڻ جي اجازت ناھي. توھان ھيٺ ڏنل خانو بہ استعمال ڪري سگھو ٿا'''. <inputbox>type=create</inputbox> * '''لکڻ کان پهرئين ھن ڳالھ جو يقين ڪريو تہ جنھن عنوان تي توھان لکي رھيا آھيو ان تي يا ان سان ملندڙ عنوانن تي وڪي ۾ ڪوئي مضمون نہ ھجي. ان جي لاء توھان ڳوليو جي خاني ۾ عنوان ۽ ان جا هم معنيٰ لفظ (اهڙا لفظ جن جي معني هڪ هجي) لکي ڳولا ڪريو'''.</center> |} -- توھان جي مدد جي لاء ھر وقت حاضر، اوهان جو خادم --[[واپرائيندڙ:KaleemBot|KaleemBot]] ([[واپرائيندڙ بحث:KaleemBot|ڳالھ]]) 10:43, 11 جُولاءِ 2025 ( يو.ٽي.سي) eeql7y464g9gflxq4jbrha7azu2x2h5 واپرائيندڙ بحث:Officialzoom 3 83454 322580 2025-07-11T10:54:43Z KaleemBot 10779 ڀليڪار! 322580 wikitext text/x-wiki {{سانچو:سماجي ڳنڍڻن تي سنڌي وڪيپيڊيا}} <div style="padding:5px;font-size:medium"><center style="word-spacing:1ex">[[Wikipedia:سفارتخانو|سفارتخاني جي صفحي تي پنھنجون سفارشون ڏيو]] </center></div> {| bgcolor="#ADDFAD" align=center style="width:100% !important; -moz-border-radius: 1em;-webkit-border-radius:1em;border-radius:1em; border-top:2px dashed #3eb2c9;border-bottom:2px dashed #3eb2c9;padding: 5px 20px 25px;" |<span style="font-family:MB Lateefi;float:left">'''[[Wikipedia:سفارتخانو|سفارتخانو]]'''</span> <div class="tabber horizTabBox" style="width: 100% !important;"> [[عڪس:Wikipedia laurier wp.png|left|200px]] <center><big>'''بزمِ سنڌي وڪيپيڊيا ۾ ڀلي ڪري آيا''' ''{{PAGENAME}}'''</big></center>'' '''السلام عليڪم! اسان اميد ڪريون ٿا تہ توھان سنڌي وڪيپيڊيا جي لاء بھترين اضافو ثابت ٿيندئو'''.<br> * وڪيپيڊيا ھڪ کليل ڄاڻ چيڪلو آھي جنھن کي اسان سڀ ملي ڪري لکندا ۽ سنواريندا آھيون. وڪيپيڊيا منصوبي جي شروعات جنوري 2001ع ۾ ٿي، جڏھن تہ سنڌي وڪيپيڊيا فيبروري 2006ع ۾ عمل آئي. في الحال ھن وڪيپيڊيا ۾ '''{{NUMBEROFARTICLES}}''' [[Special:Allpages|مضمون]] موجود آھن.<br /> * ھن چيڪلي (انسائيڪلوپيڊيا) ۾ توھان مضمون نويسي، سنوار ۽ تصحيح کان پھريان ھيٺين صفحن تي ضرور نظر وجھو.''' * صفحن جي ظاھريت جي تبديلي ۽ طریقيڪار جي لاءِ ڏسو '''[[خاص:ترجيحات|ترجيحون]]'''. <Font - size=4> '''اصول ۽ قاعدا''' </Font - size> <Font - size=3> '''توھان جو واپرائيندڙ ۽ بحث صفحو''' </Font - size><br> ھتي توھانجو [[خاص:Mypage|'''مخصوص واپرائيندڙ صفحو بہ ھوندو''']] جتي توھان [[:زمرو:يوزر سانچا|پنھنجو تعارف لکي سگھو ٿا]]، ۽ توهانجي [[خاص:Mytalk|واپرائيندڙ بحث]] تي ٻيا رڪنَ توھان سان رابطو ڪري سگھن ٿا ۽ توھان ڏي پيغام موڪلي سگھن ٿا. * '''ڪنھن ٻئي رڪن کي پيغام موڪلڻ وقت ھنن امرن جو خاص خيال رکو''': ** '''جيڪڏھن ضرورت هجي تہ پيغام کي عنوان ضرور ڏيو'''. ** '''پيغام جي آخر ۾ پنهنجي صحيح ضرور وجھو، ان جي لاءِ هي علامت درج ڪريو'''--&#126;&#126;&#126;&#126;''' يا ھن ([[عڪس:Insert-signature.png|link=]]) بٽڻ تي ٽڙڪ ڪريو'''. ** '''[[Wikipedia:اصول بحث|اظھار بحث جي آدابن]] جو خصوصي خيال رکو'''. <Font - size=3> '''تعاون''' </Font - size> * '''وڪيپيڊيا جي ڪنھن بہ صفحي جي سڄي پاسي ڳوليو جو خانو نظر ايندو آھي. جنھن موضوع تي مضمون ٺاھڻ چاھيو تہ ڳوليو جي خاني ۾ لکو، ۽ ڳوليو تي ٽڙڪ ڪريو'''. <inputbox>type=search</inputbox> * '''توھان جي موضوع سان ملندڙ جلندڙ صفحا نظر ايندا. اھو اطمينان ڪرڻ کان پوء تہ توھان جي گهربل موضوع تي پھريان کان مضمون موجود ناھي، توھان نئون صفحو ٺاھي سگھو ٿا واضع هجي تہ ھڪ موضوع تي ھڪ کان وڌيڪ مضمون ٺاھڻ جي اجازت ناھي. توھان ھيٺ ڏنل خانو بہ استعمال ڪري سگھو ٿا'''. <inputbox>type=create</inputbox> * '''لکڻ کان پهرئين ھن ڳالھ جو يقين ڪريو تہ جنھن عنوان تي توھان لکي رھيا آھيو ان تي يا ان سان ملندڙ عنوانن تي وڪي ۾ ڪوئي مضمون نہ ھجي. ان جي لاء توھان ڳوليو جي خاني ۾ عنوان ۽ ان جا هم معنيٰ لفظ (اهڙا لفظ جن جي معني هڪ هجي) لکي ڳولا ڪريو'''.</center> |} -- توھان جي مدد جي لاء ھر وقت حاضر، اوهان جو خادم --[[واپرائيندڙ:KaleemBot|KaleemBot]] ([[واپرائيندڙ بحث:KaleemBot|ڳالھ]]) 10:54, 11 جُولاءِ 2025 ( يو.ٽي.سي) 0aqsbkj1ogxq1zcusennu0jlhjnrl23 زمرو:ٽيڪنيشئين 14 83455 322585 2025-07-11T11:00:44Z Ibne maryam 17680 نئون صفحو: [[زمرو:پيشا]] [[زمرو:ٽيڪنالاجي]] 322585 wikitext text/x-wiki [[زمرو:پيشا]] [[زمرو:ٽيڪنالاجي]] ky6cdeibdtxd5avdd6d004simsr85mp 322591 322585 2025-07-11T11:04:33Z Ibne maryam 17680 322591 wikitext text/x-wiki [[زمرو:فن]] [[زمرو:پيشا]] [[زمرو:ٽيڪنالاجي]] fpfi3p0b6jovu0gwh2wguykhbwqcgpz مستري 0 83456 322587 2025-07-11T11:01:19Z Ibne maryam 17680 Ibne maryam صفحي [[مستري]] کي [[ٽيڪنيشئين]] ڏانھن چوريو 322587 wikitext text/x-wiki #چوريو [[ٽيڪنيشئين]] m6pjr7umnmierbj551luq354fhzertl