Seznam integrálů inverzních trigonometrických funkcí

Z Wikipedie, otevřené encyklopedie

Seznamy integrálů

Toto je seznam integrálů (primitivních funkcí) pro integrandy obsahující inverzní trigonometrické funkce.

Obsah

[editovat] Arkussinus

\int \arcsin \frac{x}{c} \  \mathrm{d}x = x \arcsin \frac{x}{c} + \sqrt{c^2 - x^2}
\int x \arcsin \frac{x}{c} \  \mathrm{d}x = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arcsin \frac{x}{c} + \frac{x}{4} \sqrt{c^2 - x^2}
\int x^2 \arcsin \frac{x}{c} \  \mathrm{d}x = \frac{x^3}{3} \arcsin \frac{x}{c} + \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}
\int x^n \arcsin x \  \mathrm{d}x = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \  \mathrm{d}x \right)

[editovat] Arkuskosinus

\int \arccos \frac{x}{c} \  \mathrm{d}x = x \arccos \frac{x}{c} - \sqrt{c^2 - x^2}
\int x \arccos \frac{x}{c} \  \mathrm{d}x = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arccos \frac{x}{c} - \frac{x}{4} \sqrt{c^2 - x^2}
\int x^2 \arccos \frac{x}{c} \  \mathrm{d}x = \frac{x^3}{3} \arccos \frac{x}{c} - \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}

[editovat] Arkustangens

\int \arctan \frac{x}{c} \  \mathrm{d}x = x \arctan \frac{x}{c} - \frac{c}{2} \ln(c^2 + x^2)
\int x \arctan \frac{x}{c} \  \mathrm{d}x = \frac{ (c^2 + x^2) \arctan \frac{x}{c} - c x}{2}
\int x^2 \arctan \frac{x}{c} \  \mathrm{d}x = \frac{x^3}{3} \arctan \frac{x}{c} - \frac{c x^2}{6} + \frac{c^3}{6} \ln(c^2 + x^2)
\int x^n \arctan \frac{x}{c} \  \mathrm{d}x = \frac{x^{n + 1}}{n + 1} \arctan \frac{x}{c} - \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \  \mathrm{d}x, \quad n \neq 1

[editovat] Arkussekans

\int \arcsec \frac{x}{c} \  \mathrm{d}x = x \arcsec \frac{x}{c} + \frac{x}{c |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right|
\int x \arcsec x \  \mathrm{d}x = \frac{1}{2} \left( x^2 \arcsec x - \sqrt{x^2 - 1} \right)
\int x^n \arcsec x \  \mathrm{d}x = \frac{1}{n + 1} \left( x^{n + 1} \arcsec x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + (1 - n) \left( x^{n - 1} \arcsec x + (1 - n) \int x^{n - 2} \arcsec x \  \mathrm{d}x \right) \right] \right)

[editovat] Arkuskotangens

\int \arccot \frac{x}{c} \  \mathrm{d}x = x \arccot \frac{x}{c} + \frac{c}{2} \ln(c^2 + x^2)
\int x \arccot \frac{x}{c} \  \mathrm{d}x = \frac{c^2 + x^2}{2} \arccot \frac{x}{c} + \frac{c x}{2}
\int x^2 \arccot \frac{x}{c} \  \mathrm{d}x = \frac{x^3}{3} \arccot \frac{x}{c} + \frac{c x^2}{6} - \frac{c^3}{6} \ln(c^2 + x^2)
\int x^n \arccot \frac{x}{c} \  \mathrm{d}x = \frac{x^{n + 1}}{n+1} \arccot \frac{x}{c} + \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \  \mathrm{d}x, \quad n \neq 1