Podmnožina

Z Wikipedie, otevřené encyklopedie

B je podmnožina A, A je nadmnožina B
B je podmnožina A, A je nadmnožina B

V matematice se jako podmnožina množiny A označuje taková množina B, o jejíchž všech prvcích platí, že jsou zároveň i prvky množiny A. Obdobně se může množina A označit jako nadmnožina množiny B. Tato fakta značíme B \subseteq A, případně A \supseteq B.

Každá množina je svojí podmnožinou. Podmnožina množiny B, která jí není rovna, se označuje jako vlastní podmnožina množiny B. Tzn. žádná množina není svojí vlastní podmnožinou.

Obsah

[editovat] Formální definice

B \subseteq A \Leftrightarrow ( \forall X)(X \isin B \implies X \isin A)
B \subset A \Leftrightarrow ( B \subseteq A \and \neg (B = A))

[editovat] Způsoby zápisu

Existují dva obvyklé způsoby zápisu podmnožin: Ve starším systému se symbolem „⊂“ označuje jakákoli podmnožina, zatímco symbolem „⊊“ se označuje vlastní podmnožina. V novějším systému se symbolem „⊂“ označuje vlastní podmnožina, zatímco pro označení obecné podmnožiny se používá symbol „⊆“ (analogický např. k „≤“).

[editovat] Příklady

  • Množina { 1, 2, 3 } je vlastní podmnožinou množiny { 0, 1, 2, 3 }.
  • Množina všech celých čísel je vlastní podmnožinou množiny všech reálných čísel.
  • Množina všech prvočísel větších než 500 je vlastní podmnožinou všech lichých čísel.
  • Množina { 2 } je podmnožinou množiny sudých prvočísel (ovšem nikoli vlastní podmnožinou, protože je jí rovna).
  • Množina českých prezidentů je vlastní podmnožinou množiny hlav evropských států.
  • Prázdná množina je podmnožinou každé množiny.

[editovat] Vlastnosti

Relace \subseteq je uspořádání na množině všech podmnožin (tj. na potenční množině) libovolně zvolené množiny - to znamená, že splňuje pravidla reflexivity, tranzitivity a slabé antisymetrie.
Na druhé straně existují na každé množině s alespoň dvěma různými prvky takové podmnožiny, které nejsou srovnatelné - \neg (S_1 \subseteq S_2) \and \neg (S_2 \subseteq S_1). To znamená, že \subseteq není úplné, ale pouze částečné uspořádání.
Prázdná množina je nejmenším prvkem libovolné potenční množiny vzhledem k uspořádání \subseteq.