Cantorovo diskontinuum

Z Wikipedie, otevřené encyklopedie

Cantorovo diskontinuum je matematický pojem označující jistou množinu bodů na přímce. Tato množina má některé velmi zvláštní vlastnosti. Cantorovo diskontinuum bývá také často považováno za fraktál.

Obsah

[editovat] Definice

Intuitivně lze Cantorovo diskontinuum definovat takto: Mějme dán uzavřený interval [0,1]. Odebereme-li z něj jeho prostřední třetinu (bez krajních bodů), získáme tím dva nové uzavřené intervaly třetinové délky. Pokud obou těchto intervalů opět odebereme jejich prostřední třetiny, získáme celkem čtyři nové intervaly devítinové délky. Budeme-li takto pokračovat dál, tj. budeme-li odebírat v každém kroku vždy prostřední třetiny všech vzniklých intervalů, a provedeme-li těchto kroků nekonečně mnoho, získáme množinu bodů, které zůstanou neodebrány. Tuto množinu nazveme Cantorovo diskontinuum.

Sedmá iterace Cantorova diskontinua

Mnohem kratší ale zato méně intuitivní definice je tato: Cantorovo diskontinuum je množina všech bodů v intervalu [0,1], v jejichž trojkovém rozvoji se nevyskytuje číslice 1 (přesněji v alespoň jednom z (nejvýše dvou možných) trojkových rozvojů).

[editovat] Vlastnosti

Cantorovo diskontinuum:

[editovat] Podívejte se také na

Související články obsahuje:
 Portál Matematika 

[editovat] Odkazy na další zdroje

Canorovo diskontinuum na mathworldu