Magnetron

Z Wikipedie, otevřené encyklopedie

Fotografie magnetronu.
Fotografie magnetronu.

Magnetron je generátor mikrovlnného záření, konstruovaný s důrazem na výkon a účinnost. V mikrovlnné troubě je to energetický zdroj, pomocí něhož jsou generovány elektromagnetické vlny, zahřívající potraviny. Od druhé světové války je magnetron používán u některých druhů radarů.

Obsah

[editovat] Konstrukce a princip

Základ magnetronu tvoří velmi silný permanentní magnet ve tvaru prstence. Tímto magnetickým prstencem je obklopena vakuová trubice s resonančními komorami, uvnitř které je z jedné strany žhavicí katoda a z druhé vlnovod, který přenáší mikrovlnné záření do požadovaného směru.

Hlavní části magnetronu tvoří:

  • Silný prstencový permanentní magnet.
  • Vakuová trubice s elektrodou (katoda).
  • Keramická zátka, oddělující vlnovod a vakuum.
  • Anodový blok (anoda).
  • Vlnovod.
  • Chlazení (vzduchem/kapalinou).
  • Kondenzátor.
Schématické zapojení magnetronu.
Schématické zapojení magnetronu.

Na katodu je přiváděno žhavicí napětí řádově několik voltů (3V), zatímco na anodu magnetronu napětí v řádu kilovoltů (3200 V). Dalšími důležitými součástkami, bez kterých by magnetron nebyl schopen funkce, jsou vysokonapěťová dioda, vysokonapěťový transformátor a vysokonapěťový kondenzátor.

Žhavicí katoda emituje elektrony, které jsou přitahovány směrem k anodě, ale silné magnetické pole mění jejich dráhu na kruhovou. Proud elektronů indukuje v resonačních komorách vysokofrekvenční kmity, které jsou odváděny vlnovodem.

Magnetron dosahuje poměrně velké účinnosti (kolem 65%), frekvence generovaných kmitů však není příliš přesná. Pro generování vysokofrekvenčních kmitů s přesnou frekvencí se používá klystron, jehož účinnost je však asi poloviční.

[editovat] Historie

Oscilace magnetronu jako první pozoroval a popsal již ve 20. letech Augustin Žáček, profesor Univerzity Karlovy, první jednoduché dvoupólové magnetrony však byly vyrobeny Albertem Hullem ve firmě General Electric roku 1920. Vývoji pomohli Britové v druhé světové válce díky vynálezu radaru. V roce 1940 se Johnu Randallovi a dr. Harry Bootovi z Birminghamské University podařilo sestrojit pracující prototyp s kapalinovým chlazením a silnější kavitací. V běžném životě nachází magnatron uplatnění jako zdroj energie v mikrovlnné troubě.

[editovat] Škodlivé účinky mikrovln

[editovat] Zdravotní rizika

POZOR: Mikrovlnné záření !
POZOR: Mikrovlnné záření !

Jelikož je magnetron součástka generující neviditelné záření, měla by přítomnost tohota záření oznamovat výstražná tabulka. Mikrovlnné záření je zákeřné hlavně v tom, že jeho účinky nejsou hmatatelné. Pokud je živá tkáň vystavena jejich účinkům, dochází v ní k nadměrnému vývoji tepla v důsledku rozkmitání molekul vody a vzniklý tepelný účinek může poškodit biologickou tkáň.

Jako první zaznamená mikrovlné účinky oko, kdy vystavený jedinec přestává již po chvíli (záleží na síle mikrovlného pole) vidět v důsledku zahřívání sklivce. Dále dochází k poškození vnitřních orgánů bohatých na vodu, v poslední fázi dochází k popálení kůže a celkové destrukci tkání. Je důležité si uvědomit, že bezpečnou ochranou před mikrovlnným zářením je vrstva vody - vodní bariéra (např: vodopád).

[editovat] Rušení elektronických zařízení

Silné mikrovlnné záření může ovlivňovat funkci elektronických přístrojů, vlivem velmi silného mikrovlnného záření může dojít i k jejich poškození nebo zničení. Jelikož většina magnetronů, používaných v mikrovlnných troubách, pracuje v bezlicenčním pásmu ISM (Industrial, Scientific and Medical) na frekvenci kolem 2,4 GHz, mohl by při nekontrolovaném vyzařování jejich provoz rušit satelitní přijímače, zařízení WiFi, Bluetooth, bezdrátové telefony a další přístroje, pracující v tomto pásmu.


[editovat] Podívejte se také na