Fuzzy logika

A Wikipédiából, a szabad lexikonból.

A fuzzy logika a többértékű logikai szemantikák egyike. Tulajdonképpen fuzzy logika név alatt egy egész elméletcsaládról beszélhetünk, melynek sokrétű alkalmazásai vannak elsősorban az informatikában, de alkalmazásra talált a nyelvtudományi és logikai szemantikában, a matematikai logikában és a valószínűségelméletben is.

A tágabb értelemben vett fuzzy logika alapját képezi a fuzzy számítógépes rendszereknek, melyek szemben a szokványos rendszerekkel, nem csak igen és nem (illetve ki és be, vagy 1 és 0) értékekkel dolgoznak, hanem közbülső „valóságértékekkel” is, mint például 0,5 (féligmeddig), 0,2 (kicsit), 0,8 (eléggé)... Ezáltal az „életlen” (fuzzy) meghatározások (mint például az előbbiek) matematikailag kezelhetővé válnak.

Manapság a fuzzy logika illetve a fuzzy-control, tehát a fuzzy logikán alapuló irányítás, elsősorban gépek és robotok, háztartási készülékek irányításában talál alkalmazásra.

Tartalomjegyzék

[szerkesztés] A fuzzy gondolatkör

Filozófiailag a fuzzy gondolatkör a sztoikusokig nyúlik vissza. Ők voltak, akik először mutattak rá, hogy természetes fogalmaink igazságtartományának határai nem jelölhető ki egyértelműen. Klasszikus példájuk a kupac, vagy szóritész paradoxon volt. Eszerint tekintsünk egy halom vagy kupac kavicsot. A sztóikusok arról faggatták hallgatóságukat, hogy ha egyenként elveszünk egy-egy kavicsot, akkor meddig mondhatjuk még, hogy a szóban forgó dolog még kavicshalom-e vagy már más. Egy másik példa a kopasz ember paradoxonja. Egy illető nyilvánvalóan nem kopasz. Vajon ha egyenként kihúznánk a hajszálait, hol lenne az a pont, ahol a már kopasznak tekinthetnénk?

A fogalmaink igazságtartományának elmosódott határait matematikai szempontból először Lotfi A. Zadeh a Berkeley (USA) egyetem számitástechnika professzora vizsgálta, 1965-ben. Ő adta a fuzzy logika (angolul: fuzzy = pontatlan, elmosódott, életlen, esetleg: „homálylogika”) kifejezést is. Ezt úgy modellezte, hogy minden egyes logikai kijelentéshez valamilyen módon egy, a [0,1] zárt intervallumba eső értéket rendelt. Eredetileg csak a fuzzy halmazok, illetve ezek karakterisztikus függvényének, a fuzzy függvényeknek fogalmát definiálta.

Egy U alaphalmaz H (hagyományos, vagy éles) részhalmazának karakterisztikus függvénye a következő:

\chi_{H}:U\rightarrow \{0,1\};\;x\mapsto\begin{cases} \ 1, & \mbox{ha }x\in H, \\ \ 0, & \mbox{ha }x \notin H \end{cases}

Tehát a klasszikus H halmaz és egy elem tartalmazási relációja kölcsönösen egyértelműen megfeleltethető a karakterisztikus függvényének:

x\in H\Leftrightarrow \chi_{H}(x)=1

Ezzel szemben az U univerzum elemeiből alkotott fuzzy halmazzal, ami lényegében egy olyan függvény, a fuzzy-tartalmazási függvény ( μH ), mely minden U-beli elemhez egy [0,1]-beli értéket rendel, és mely azt szándékozik jelenteni, hogy az adott elem milyen mértékben tekinthető a fuzzy halmaz elemének:

(\,\forall x\in U\,)(\,\mu_H(x)\in [0,1]\,)


Ezt a gondolatot Zadeh azokra a már meglévő vizsgálatokra alapozta, melyet Post, Gödel illetve Łukasiewicz végzett a többértékű extenzionális logikák megalkotásakor.

Megjegyezzük, hogy a fuzzy logika nem érinti a matematika megalapozási kérdésit, hiszen a propozicionális és predikátumlogika fuzzy modelljei ugyanúgy a halmazelmélet talaján állnak, mint a többi modellelméleti illetve algebrai szemantikai rendszer. Másrészt logikai vonatkozásai is csak a fogalmak homályosságának egyféle modellezése, ráadásul realista (platonista) szemszögből. Ugyanis érthető módon azt feltételezi, hogy a fogalmak definíciójának homályossága a fogalmak természetes tulajdonsága és ennek mértéke egyértelműen meghatározott. Azt a problémát azonban kikerüli, hogy nem tudjuk, vajon nem nyelvi elégtelenségek okozzák-e csak a fogalmaink homályosságát, melyek mértékéhez ílymódon nem férhetünk hozzá. Ezt jól mutatja, hogy az alkalmazásokban a számszerűsíthető, fokozatokkal rendelkező homályosságot képes csak kezelni, mint például az életkor (vagy a kavicskupac nagysága), ellenben a bonyolultabb nyelvi szerkezetek homályosságával már csak hajánál előrángatott módon tud megküzdeni. Tegyük hozzá azonban, hogy a fuzzy logikának nem is elsősorban logikai, hanem informatikai, szabályozáselméleti alkalmazásai vannak.

[szerkesztés] Alkalmazásai

A fuzzy logika alkalmazásai megtalálhatók az automatizálási technikában, az üzemgazdaságban, az orvosi technikában, a szórakoztató elektronikában az autóiparban stb. A fuzzy logika gyakran akkor hasznos, ha egy bizonyos probléma matematikai leirása nem áll rendelkezésre, ill. nem, vagy csak túlzott ráfordítással lenne elkészíthető, azonban a hétköznapi verbális, szöveges megfogalmazás adott. Ilyen esetekben a folyó nyelven, tehét normális emberi beszédben, fogalmazott mondatokból és szabályokból a fuzzy logika segítségével egy olyan matematikai megfogalmazás, leírás nyerhető, amely aztán számítógépeken is alkalmazható.

Egy tipikus alkalmazás a mosógépek oly módon történő programozása, hogy a gép a tisztítandó textiliák szenyezettségének függvényében adagolja a mosószert. A gondolatmenet kiindulópontja, hogy a ruhák szennyességi foka nem egyértelmüen meghatározható. Példának okáért, nem létezik egy 55%-os szenyezettségi fok definíció. Mivel azonban a mosószer mennyisége egy pontossan meghatározandó, ezért egy olyan logikára van szükség, amely pontatlan, életlen fogalmakkal, mint "enyhén szennyes" vagy "erősen koszolódott" is bánni tud. A fuzzy logika, illetve a fuzzy logika alapján felállított szabályrendszer, a szenyeződési fokot dokumentáló verbális kifejezéseket egy konkrétan definiált tisztítószermennyiségre fordítja. Például a kifejezés "kissé szenyezett" 23 gramm tisztítószert, míg "erősen koszolódott" 65 grammnyit eredményez. A legfontosabb megállapítás, hogy ezen logika mögött nem található egy egyértelmü matematikai funkció. A nevezett mennyiségeket megfigyelésekből, tapasztalati értékekből, empírikus vizsgálatokból kell nyerni.

További alkalmazások a metrók irányítóberendezései, automata váltók vezérlése személygépkocsikban, riasztórendszerek orvosi müszereknél, rádiók frekvenciaszűrői, gépjárművek ABS rendszerei, tűzjelzőtechnika, energiaellátók prognózisai a felhasználást illetően, automatikus fényképezőgépek stb.

A fuzzy logika az irányitástechnikán túlmenően üzemgazdaságokban is sikeresen felhasználható. Egy ilyen példa az intelligens kárfelülvizsgálat, amellyel biztosítótársaságok csalások ellen védekeznek.

[szerkesztés] Fuzzy halmazok

A fuzzy logika alapja az un. fuzzy, tehát életlen, elmosódott halamazok. A tradicionális halmazokkal szemben (a fuzzy logika összefüggésében éles halmazoknak is nevezik öket), amelyekben egy elem vagy a halmazhoz tartozik vagy nem, egy fuzzy halmaznál az elem részben is tartozhat a halmazhoz. A hozzátartozás mértékét a hozzátratozási függvény (fuzzy függvény) µ határozza meg, amely a fuzzy halmaz elemeihez egy nulla és egy közötti valós számot rendel hozzá.

Fuzzy halmazoknál is lehetséges az operátorok használata, mint a tradicionális halmaztanban, mint páldául metszet (ÉS), egyesülés (VAGY) és komplemens (NEM). Ezen operációk modellezéséhez a T-norm, S-norm és a negációs függvény osztályokat használják.


[szerkesztés] Fuzzy függvények

Fuzzy fügvény az életkorhoz
Fuzzy fügvény az életkorhoz

A hozzárendelö függvények a fuzzy függvények. Egy példa erre az emberi kort leiró fuzzy halmaz fuzzy függvénye. Ez több tetö alakú háromszögböl áll, a különbözö korok számára. Mindegyik háromszög az emberi élet néhány éves szakaszát fedi. Egy negyvenöt éves ember ezáltal következő tulajdonságokkal bírna: még fiatal 0,75-ös értékkel, (ez még viszonylag sok), középkorú 0,25-ös értékkel (egy egy kicsit) és a többi tulajdonsággal 0 értékkel bír, tehát egyáltalán nem. Más szavakkal: egy negyvenöt éves még elég nagy mértékben fiatal és egy kicsit középkorú, viszont egyáltalán nem öreg, egyáltalán nem nagyon fiatal stb.

Fuzzy függvényeket a legtöbb esetben statisztikai gyűjteményekből származó táblázatokból készítenek. Ezek az értékgyűjtemények készülhetnek a felhasználás által is, amennyiben egy visszavezetés adott, mint például egy lift vezérlés esetében.

Ez a háromszögletű, tehát lineáris forma egyáltalán nem szükséges, fuzzy függvények bármilyen formátumúak lehetnek, amíg a függvény értékek nulla és egy között maradnak. A gyakorlaban azonban ilyen háromszögszerű, lineáris függvényeket alkalmaznak a legszívesebben, az egyszerű kiszámíthatóság miatt.

A következő S-függvény egy nem lineáris fuzzy függvény esete:S(x,a,\delta)=\begin{cases} 0 & x\le a -\delta \\                             2(\frac{x-a+\delta}{2\delta})^2 & a - \delta < x \le a \\                             1-2(\frac{a-x+\delta}{2\delta})^2 & a < x \le a + \delta \\ 1 & x \ge a + \delta  \end{cases}

A görbe változó súlyozással rendeli a külöböző életkorokat egy bizonyos halmazhoz.

Az emberi kor ezen görbe segítségével következőképpen ábrázolható:

Az emberi kor
Meghatározás (halmaz) Fuzzy-függvény
nagyon fiatal s_0: \;(1-s(x,30,30))^2
fiatal s_1: \;1-s(x,30,30)
már nem nagyon fiatal s_2: \;1-(1-s(x,30,30))^2
többé kevésbé öreg s_3: \;\sqrt{s(x,60,30)}
öreg s_4: \;s(x,60,30)
nagyon öreg s_5: \;s(x,60,30)^2


Hétköznapi módosítások, mint "nagyon", "többé-kevésbé" úgymint "már nem" az adott függvény egyszerű módosításával ábrázolhatók:

  • A hétköznapi megerősítő modifikátor "nagyon" egy fokozott exponens formályában ábrázolható (s_0 = s_1^2). Az eredmény egy meredekebb vonulat, a kiindulási függvényhez képest.
  • A hétköznapi modifikátor "többé-kevésbé" egy csökentett exponens ill. egy gyök segítségével fejezhető ki (s_3 = \sqrt{s_4}). Az eredmény egy laposabb vonulat, a kiindulási függvényhez képest.
  • A hétköznapi kifejezés tagadása egy egyszerű kivonással ábrázolható:s2 = 1 − s0.

Életkor

[szerkesztés] Fogalmi behatárolás

A fuzzy logikával nem összeszévesztendő a fuzzy keresés, amely adatbankokban egy "elmosódott", "életlen", "pontatlan" keresést tesz lehetővé, például olyan esetekben, amikor egy név vagy egy fogalom pontos írásmodja nem ismeretes.

Továbbá a fuzzy értékek az [0,1] intervallumból megjelenésükben emlékeztetnek ugyan a valószívűségre ill. valószínűségértékekre, azonban a fuzzy téma alapvetően más mint a valószínűség.

Megjegyzendő, hogy két egymást metsző függvény nem szükségszerűen összegez 1-et.

[szerkesztés] Külső hivatkozások