Gravitációs hullám

A Wikipédiából, a szabad lexikonból.

A gravitációs hullám a téridő görbületének hullámszerűen terjedő megváltozása, amelyet az általános relativitáselmélet jósolt meg. Nemcsak a klasszikus értelemben megfogalmazott tömegvonzás „mellékterméke”, hanem minden gyorsuló tömeg kelti. A gravitációs sugárzás a gravitációs hullámok által továbbított energia. A gravitációs hullámokat keltő rendszerek fontos példái a kettőscsillagok, amelyek egyik tagja fehér törpe, neutroncsillag, vagy fekete lyuk.

Noha a gravitációs sugárzást még nem sikerült közvetlenül is észlelni, közvetett formában már sikerült a kimutatása a Hulse-Taylor kettőspulzár periódusidejének precíz mérése alapján. Ez volt az 1993-as fizikai Nobel-díj kiadásának alapja. A csillagászat új ágát fogja elindítani a „gravitációshullám-csillagászat” megindulása.

Tartalomjegyzék

[szerkesztés] Általános tulajdonságai

Az általános relativitáselmélet szerint a gravitációs tér változásai nem hatnak azonnal, mint a newtoni égi mechanikában, hanem fénysebességgel terjed a zavar. Emiatt minden gyorsuló tömegekből álló rendszer (mint amilyen egy kettőscsillagrendszer vagy egy keringő bolygó) gravitációs hullámot kelt. Ez a jelenség elektromágneses sugárzáshoz hasonló, amelyet gyorsuló elektromosan töltött részecskék hoznak létre. A lényeges különbség a kettő között, hogy negatív tömeg nincs. Emiatt nincs gravitációs dipólus, hanem a gravitációs sugárzás kvadrupól sugárzás. Továbbá érvényes rá a Birkhoff-tétel alapján, hogy egy szimmetrikusan oszcilláló tömegeloszlás nem képes gravitációs hullámot létrehozni.

A gravitáció kvantumtérelmélete szerint, melynek elméleti leírása eddig nem sikerült, a gravitációt a gravitációs kölcsönhatás gravitonok által közvetíti, ami azt jelenti, hogy a gravitációs hullámok gravitonoknak nevezett kvantált egységekben sugárzódik ki és nyelődik el. A graviton az elektrodinamika fotonjaihoz hasonlít. Az elektrodinamikában szerzett tapasztalatokból (dipólus → a foton spinje 1) kiindulva a graviton (kvadrupól) spinje valószínűleg 2.

Egy további különbség a gravitációs hullámok és az elektromágneses hullámok között az a körülmény, hogy az elektrodinamikában érvényes szuperpozíció elve az einsteini téregyenletek nemlinearitása miatt nem használható. Az elektromágneses hullámok esetén a hullámegyenlet pontosan (egzaktul) megkapható a lineáris Maxwell-egyenletekből. A gravitációs hullámok esetén a hullámegyenlet csak kis amplitúdók esetén közelítőleg érvényes. Ez az egy adott fizikai helyzetnek megfelelő hullámmegoldások kiszámítását jelentősen megnehezíti. Sok esetben csupán a nemlineáris téregyenleteket lineáris differenciálegyenletekkel közelítve határozhatóak meg a közelítő megoldások.

A gravitációs hullámok transzverzális hullámok. Egy megfigyelő számára a téridő a hullám terjedésére merőlegesen nyúlik és rövidül. Az elektromágneses hullámokhoz hasonlóan a gravitációs hullámok is két polarizációs állapottal rendelkeznek.

[szerkesztés] Forrásai és kimutatása

A két egymás körül keringő neutroncsillag által keltett gravitációs hullám keringési síkbeli része.
A két egymás körül keringő neutroncsillag által keltett gravitációs hullám keringési síkbeli része.

Minden változás a világegyetembeli tömeg és/vagy energia megváltozásában, amelyben legalább a kvadrupolmomentum az időben megváltozik, gravitációs hullámok kibocsátásához vezet. Legegyszerűbb esetben ezt két egymás körül keringő tömeg okozza. Mivel a gravitációs kölcsönhatás nagyon gyenge, ezért ez a hatás a naprendszerünkben szokásos tömegek esetén olyan kicsi, hogy eddig nem volt kimutatható.

Intenzívebb és ezért megfigyelhető gravitációs hullámforrásokat szupernóvarobbanások során várunk, valamint olyan egymás körül keringő párok esetén, amelyek tagjai neutroncsillagok vagy fekete lyukak. A jelenlegi kísérletekben ilyen forrásokból reméljük kimutatni a hullámot. Az ilyen források hatalmas távolsága miatt ezek hatása a Földnél rendkívül kicsi, és nehéz megkülönböztetni helyi jelenségektől, például a földrengéstől.

Az Ősrobbanás is gravitációs hullámforrásként szolgál, melynek a frekvenciája és energiasűrűsége azonban a világegyetem tágulása miatt olyan kicsivé vált, hogy csak a 2015-re az űrbe tervezett LISA detektornak lesz esélye kimutatni.[1]

A gravitációs hullámok sugárzásának kiszámítása elég nehéz, de szükséges, hogy a mérések lehetségességét előre tudjuk jelezni.

[szerkesztés] A gravitációs hullámok kimutatása

Az 1960-as évek óta folynak kísérletek Joseph Weber (Marylandi Egyetem) vezetésével nagy, körülbelül másfél tonna tömegű fémhengerekkel, amelyeknek hullámzásba kellene jönniük a gravitációs hullámok hatására. Később további, azonos elven működő detektorokat építettek. Kétségkívül bebizonyosodott, hogy a fejlettségük ellenére a felfüggesztés- és méréstechnika nem megfelelő erre a feladatra. A módszer egy további hátulütője, hogy egy ilyen henger csak a rezonanciafrekvienciája nagyon szűk környezetében képes hullámzás észlelésére. Ezért más megoldásokat kellett keresni.

Manapság Michelson-interferométereket használnak, hogy a rajtuk keresztülhaladó hullámokat azonnal meg tudják figyelni. Ezekben a téridő tulajdonságok helyi változásai két lézersugár érzékeny interferenciáját megváltoztatják. Ilyen típusú jelenlegi kísérletek – mint például a GEO600 (Németország / Nagy-Britannia)[2], VIRGO (Olaszország)[3], TAMA300 (Japán)[4] és a LIGO (USA)[5] – néhány éve folynak, és eddig nem értek el eredményeket.

Ezek a kísérletek lézerfényt használnak, amelyek hosszú alagutakban oda-vissza futnak. Az áthaladó gravitációs hullámoknak meg kellene változtatniuk az alagút hosszát, ezt pedig egy ellenőrző lézernyalábbal való interferencián keresztül mérni lehetne. A gravitációs hullámok közvetlen észleléséhez olyan fejlett méréstechnika szükséges, ami egészen minimális hosszváltozás (a proton méretének tízezrede!) kimutatására is képes. A tervezett LISA kísérlet a világűrben fog zajlani.

A gravitációs hullámok egy indirekt kimutatása sikerült Russell Hulsenak és Joseph Taylornak, a Princeton Egyetem fizikusainak. A két tudós az 1974-ben felfedezett kettőspulzár, a PSR 1913+16 sok éves megfigyelésével igazolta, hogy az egymás körül keringő két tömeg pályája az idő folyamán egyre szűkebbé vált, azaz energiát vesztett a rendszer. Az megfigyelt energiaveszteség pontosan egyezik az elméletileg számolt értékkel, amelyet a gravitációs sugárzás veszteségére kaptak. Hulse-t és Taylort felfedezésükért 1993-ban fizikai Nobel-díjjal tüntették ki.

[szerkesztés] Források és megjegyzések

  1. ^ Observing relic gravitons
  2. ^ A GEO600-projekt honlapja
  3. ^ A VIRGO-projekt honlapja
  4. ^ A TAMA300-projekt honlapja
  5. ^ A LIGO-projekt honlapja

[szerkesztés] Külső hivatkozások