Figura:Chebyshev.png
Da Wikipedia.

Non sono disponibili versioni a risoluzione più elevata.
Chebyshev.png (201 × 201 pixel, dimensioni: 26 KB, tipo MIME: image/png)
St'archivi-sì a l'é stait carià butandlo an comun con dj'àutri proget, che 'cò lor a peulo dovrelo.
La bildo estas kopiita de wikipedia:en. La originala priskribo estas:
//
| This work is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version. This work is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
العربية ǀ Česky ǀ Deutsch ǀ English ǀ Español ǀ فارسی ǀ Français ǀ Italiano ǀ 日本語 ǀ Nederlands ǀ Polski ǀ Português ǀ Русский ǀ Svenska ǀ Türkçe ǀ 简体中文 ǀ 正體中文 ǀ +/- |
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#define PI 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825
#define PI2 (PI*2)
#define SQ2 1.414213562373095048801688724209698078569671875376948073176679737990732478462
#define FI 1.618033988749894848204586834365638117720309179805762862135448622705260462818902449707207204
#define SX 201
#define SY 201
#define BPL ((SX*3+3)&~3)
unsigned char bhdr[54]={
0x42, 0x4D, 0x36, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x36, 0x00, 0x00, 0x00, 0x28, 0x00,
0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x01, 0x00, 0x18, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x30, 0x00, 0x12, 0x0B, 0x00, 0x00, 0x12, 0x0B, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
unsigned char po[BPL];
double gr[SY][SX][3];
void drawit();
int main(int a, char **b) {
FILE *o;
int x, y, c; //Some variable declarations may not be relevant
double t;
char *p;
srand(time(0));
drawit();
p=bhdr+2; *p++=x=54+BPL*SY; *p++=x>>=8; *p++=x>>=8; *p=x>>=8;
p=bhdr+18; *p++=x=SX; *p++=x>>=8; *p++=x>>=8; *p++=x>>=8;
*p++=x=SY; *p++=x>>=8; *p++=x>>=8; *p=x>>=8;
if(!(o=fopen("func.bmp", "wb"))) {
fclose(o);
printf("Couldn't open output file.\n");
return(0);
}
fwrite(bhdr, 54, 1, o);
for(x=SX*3;x<BPL;++x) po[x]=0;
for(y=SY-1;~y;--y) {
for(x=0,p=po;x<SX;++x) for(c=2;~c;--c) *p++=(t=gr[y][x][c])<=0?0:(t>=1?255:t*255);
fwrite(po, BPL, 1, o);
}
fclose(o);
return(0);
}
double minx, miny, maxx, maxy, dlx, dly;
double cr, cg, cb;
void func(int f, double x, double *y, double *dydx) {
double x2, x3, x4, x5, x6, x7;
x2=x*x;
x3=x2*x;
x4=x3*x;
x5=x4*x;
x6=x5*x;
x7=x6*x;
switch(f) {
//x
case 0: *y=x; *dydx=1; break;
//sinh(x)
case 1: *y=(exp(x)-exp(-x))/2; *dydx=(exp(x)+exp(-x))/2; break;
//cosh(x)
case 2: *y=(exp(x)+exp(-x))/2; *dydx=(exp(x)-exp(-x))/2; break;
//tanh(x)
case 3: *y=(exp(x)-exp(-x))/(exp(x)+exp(-x)); *dydx=1-*y**y; break;
//Chebyshev 0-7
case 100: *y=1; *dydx=0; break;
case 101: *y=x; *dydx=1; break;
case 102: *y=2*x2-1; *dydx=4*x; break;
case 103: *y=4*x3-3*x; *dydx=12*x2-3; break;
case 104: *y=8*x4-8*x2+1; *dydx=32*x3-16*x; break;
case 105: *y=16*x5-20*x3+5*x; *dydx=80*x4-60*x2+5; break;
case 106: *y=32*x6-48*x4+18*x2-1; *dydx=192*x5-192*x3+38*x; break;
case 107: *y=64*x7-112*x5+56*x3-7*x; *dydx=448*x6-560*x4+168*x2-7; break;
default: *y=100; *dydx=0; break;
}
}
void subp(int x, int y, double r, double g, double b) {
if(x>=0&&y>=0&&x<SX&&y<SY) {
gr[y][x][0]-=r; gr[y][x][1]-=g; gr[y][x][2]-=b;
}
}
void drawdot(double x, double y) {
int ix, iy;
double dx, dy, ax, ay;
x=(x-minx)/(maxx-minx)*(SX-1)+.5;
y=(y-maxy)/(miny-maxy)*(SY-1)+.5;
ix=floor(x); dx=x-ix; iy=floor(y); dy=y-iy;
ax=1-dx; ay=1-dy;
subp(ix-1, iy-1, cr*ax*ay*.05, cg*ax*ay*.05, cb*ax*ay*.05);
subp(ix , iy-1, cr *ay*.05, cg *ay*.05, cb *ay*.05);
subp(ix+1, iy-1, cr*dx*ay*.05, cg*dx*ay*.05, cb*dx*ay*.05);
subp(ix-1, iy , cr*ax *.05, cg*ax *.05, cb*ax *.05);
subp(ix , iy , cr *.05, cg *.05, cb *.05);
subp(ix+1, iy , cr*dx *.05, cg*dx *.05, cb*dx *.05);
subp(ix-1, iy+1, cr*ax*dy*.05, cg*ax*dy*.05, cb*ax*dy*.05);
subp(ix , iy+1, cr *dy*.05, cg *dy*.05, cb *dy*.05);
subp(ix+1, iy+1, cr*dx*dy*.05, cg*dx*dy*.05, cb*dx*dy*.05);
}
void drawhorz(double y) {
int ix, iy;
double dy, ay;
y=(y-maxy)/(miny-maxy)*(SY-1)+.5;
iy=floor(y); dy=y-iy;
ay=1-dy;
for(ix=0;ix<SX;++ix) {
subp(ix , iy-1, cr *ay , cg *ay , cb *ay );
subp(ix , iy , cr , cg , cb );
subp(ix , iy+1, cr *dy , cg *dy , cb *dy );
}
}
void drawvert(double x) {
int ix, iy;
double dx, ax;
x=(x-minx)/(maxx-minx)*(SX-1)+.5;
ix=floor(x); dx=x-ix;
ax=1-dx;
for(iy=0;iy<SY;++iy) {
subp(ix-1, iy , cr*ax , cg*ax , cb*ax );
subp(ix , iy , cr , cg , cb );
subp(ix+1, iy , cr*dx , cg*dx , cb*dx );
}
}
void drawaxes() {
drawhorz(0);
drawvert(0);
}
void drawgrid() {
int a, b;
for(a=ceil(miny/dly)-1;a<=floor(maxy/dly)+1;++a) drawhorz(a*dly);
for(a=ceil(minx/dlx)-1;a<=floor(maxx/dlx)+1;++a) drawvert(a*dlx);
}
void drawfunc(int f) {
double x, y, dydx, pfx, pfy;
pfx=(maxx-minx)/(SX-1);
pfy=(maxy-miny)/(SY-1);
for(x=minx;x<maxx;x+=.1*pfx/sqrt(1+dydx*dydx/((pfy*pfy)/(pfx*pfx)))) {
func(f, x, &y, &dydx);
drawdot(x, y);
}
}
void drawit() {
int x, y, c;
for(y=0;y<SY;++y) for(x=0;x<SY;++x) for(c=0;c<3;++c) gr[y][x][c]=1;
//Chebyshev 0, 1, 2, 3, 4, 5, 6, 7
minx=miny=-5/4.; maxx=maxy=5/4.; dlx=dly=1;
cr=.6; cg=.6; cb=.6;
drawfunc(100);
cr=.1; cg=.8; cb=.8;
drawfunc(101);
cr=.8; cg=.8; cb=.1;
drawfunc(102);
cr=.8; cg=.1; cb=.8;
drawfunc(103);
cr=.1; cg=.1; cb=.8;
drawfunc(104);
cr=.1; cg=.1; cb=.1;
drawfunc(105);
cr=.1; cg=.8; cb=.1;
//drawfunc(106);
cr=.8; cg=.1; cb=.1;
//drawfunc(107);
/* //sinh, cosh, tanh
minx=miny=-5; maxx=maxy=5; dlx=dly=1;
cr=.1; cg=cb=.8;
drawfunc(1);
cg=.1; cb=cr=.8;
drawfunc(2);
cb=.1; cr=cg=.8;
drawfunc(3);
*/
cr=cg=cb=.8;
drawaxes();
cr=cg=cb=.1;
drawgrid();
cr=cg=cb=.025; dlx=dly=.1;
drawgrid();
}
//
| date/time | username | edit summary |
|---|---|---|
| 01:07, 12 September 2004 | en:User:Cyp | (C source) |
| 01:04, 12 September 2004 | en:User:Cyp | (Graph of Chebyshev polynomials) |
[edit] Historio de la dosiero
Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.
Click on date to download the file or see the image uploaded on that date.
- (del) (cur) 01:04, 12 September 2004 . . en:User:Cyp Cyp ( en:User_talk:Cyp Talk) . . 201x201 (26147 bytes) (Graph of Chebyshev polynomials)
Anliure a le figure
Le pàgine sì sota a l'han andrinta dj'anliure a sta figura-sì:

