Корисник:Обрадовић Горан/Сабирање

Из пројекта Википедија

3 + 2 = 5 са јабукама, популаран избор у уџбеницима
3 + 2 = 5 са јабукама, популаран избор у уџбеницима[1]

Сабирање је математичка операција увећавања једне количине за другу количину. Резултат сабирања две величине a и b је њихов збир (или сума), a + b; збир a + b је за a већи од b, и за b већи од a. На пример, 3 + 2 = 5 \!\, јер 5 је за 2 веће од 3.

Извођење сабирања је једна од најједноставнијих нумеричких операција, коју су способна да изведу деца већ од пет месеци старости, па чак и неке животиње.

У формалној математици, бинарна операција сабирања је дефинисана на многим скуповима бројева. Кључни су скупови природних бројева, целих бројева, рационалних бројева, и реалних бројева. Сабирање над овим скуповима се проширује на сложеније објекте, као што су матрице и полиноми.

Сабирање више од два броја се може посматрати као поновљено сабирање два броја; ова процедура се назива сумирање, и укључује начине да се сабере бесконачно много бројева у бесконачним редовима.

Понављање сабирања броја један је најједноставнији вид бројања.

Садржај

[уреди] Нотација и терминологија

Сабирање се обележава коришћењем знака плус "+" између сабирака (бројева који се сабирају); то је инфиксна нотација. Резултат се изражава знаком једнакости. На пример,

1 + 1 = 2
2 + 2 = 4
5 + 4 + 2 = 11 (види асоцијативност)
3 + 3 + 3 + 3 = 12 (види множење)

Постоје ситуације када се сабирање подразумева, чак иако нема знака за сабирање:

  • Колона бројева, са задњим бројем у колони подвученим, обично означава да бројеве из колоне треба сабрати, и збир написати испод подвучене линије.
  • Цео број праћен разломком означава збир целог броја и разломка. На пример,
          312 = 3 + 12 = 3,5.
    Ова нотација може да доведе до конфузије, јер се у већини других контекста овако означава множење.

Бројеви или објекти који треба да се саберу се уопштено називају сабирцима, било да их је два или више.

[уреди] Интерпретације

Сабирање се користи да моделује бројне физичке процесе. Чак и у простом случају сабирања природних бројева, постоји обиље могућих интерпретација, и још више визуелних репрезентација.

[уреди] Унија скупова

Можда најосновнија интерпретација сабирања лежи у унији скупова:

  • Када два или више скупа спојимо у један скуп, број објеката у том заједничком скупу је једнак збиру бројева објеката у првобитним скуповима.

Овде се подразумева да су скупови узајамно дисјунктни (имају различите чланове).

Ову интерпретацију је врло једноставно визуализовати. Међутим, није очигледно како проширити ово виђење сабирања да укључи бројеве који нису цели, или су негативни.

Једно могуће решење је да се посматрају скупови чији су елементи лако дељиви, као што су колачи или штапићи који се могу делити на делове.[2].

[уреди] Extending a measure

  • When an original measure is extended by a given amount, the final measure is the sum of the original measure and the measure of the extension.
Слика:AdditionLineUnary.svg
A number-line visualization of the unary addition 2 + 4 = 6. The augend 2 is a point; the addend 4 is a change, resulting in 6.

Under this interpretation, the parts of a sum a + b play asymmetric roles; instead of calling both a and b addends, it is more appropriate to call a the augend, since a plays a passive role. In geometry, a might be a point and b a vector; their sum is then another point, the translation of a by b. In analytic geometry, a and b might both be represented by ordered pairs of numbers, but they remain conceptually different.[3]

Here, the addition operation is not so much a binary operation as a family of unary operations; the function (+b) is acting on a.[4] The unary and binary views are formally equivalent: if X is the set of all possible augends and Y is the set of all possible addends, there is a natural identification of sets of functions

X^{X\times Y}\cong \left(X^X\right)^Y.[5]

This formula is a special case of a law of exponentiation that may be more familiar for numbers.

The unary view is useful, for example, when discussing subtraction. Addition and subtraction are not inverses as binary operations, but they are inverses as families of unary operations.

This section is under construction.

[уреди] Combining translations

  • When two motions are performed in succession, the measure of the resulting motion is the sum of the measures of the original motions.
Слика:AdditionLineAlgebraic.svg
A number-line visualization of the algebraic addition 2 + 4 = 6. A translation by 2 followed by a translation by 4 is the same as a translation by 6.
This section is under construction.

[уреди] Properties

[уреди] Комутативност

4 + 2 = 2 + 4 приказано циглама
4 + 2 = 2 + 4 приказано циглама

Сабирање је комутативно, што значи да се може обрнути редослед сабирака, а да ће збир остати исти. Симболички, ако су a и b било која два броја, тада

a + b = b + a.

Чињеница да је сабирање комутативно је позната као комутативни закон сабирања. Овај израз сугерише да постоје и други комутативни закони: на пример, постоји комутативни закон множења. Међутим, многе бинарне операције нису комутативне, као што је одузимање и дељење.

[уреди] Асоцијативност

2+(1+3) = (2+1)+3 са означеним штаповима
2+(1+3) = (2+1)+3 са означеним штаповима

Још једно својство сабирања је асоцијативност, која се појављује са дефиницијом поновљеног сабирања. Да ли би израз

"a + b + c"

требао да буде дефинисан као (a + b) + c или као a + (b + c)? Да је сабирање асоцијативно нам говори чињеница да је избор небитан. За било која три броја a, b, и c, тачно је да

(a + b) + c = a + (b + c).

На пример, (1 + 2) + 3 = 3 + 3 = 6 = 1 + 5 = 1 + (2 + 3). Нису све операције асоцијативне, па је у изразима са другим операцијама, као што је одузимање битно да се назначи редослед.

[уреди] Нула и јединица

5 + 0 = 5 са врећама тачака
5 + 0 = 5 са врећама тачака

Када се дода нула било којем броју, количина се не мења; нула је неутрални елемент за сабирање, такође познат и као адитивни идентитет. У симболима, за свако a,

a + 0 = 0 + a = a.

This law was first identified in Brahmagupta's Brahmasphutasiddhanta in 628, although he wrote it as three separate laws, depending on whether a is negative, positive, or zero itself, and he used words rather than algebraic symbols. Later Indian mathematicians refined the concept; around the year 830, Mahavira wrote, "zero becomes the same as what is added to it", corresponding to the unary statement 0 + a = a. In the 12th century, Bhaskara wrote, "In the addition of cipher, or subtraction of it, the quantity, positive or negative, remains the same", corresponding to the unary statement a + 0 = a.[6]

In the context of integers, addition of one also plays a special role: for any integer a, the integer (a + 1) is the least integer greater than a, also known as the successor of a. Because of this succession, the value of some a + b can also be seen as the bth successor of a, making addition iterated succession.

[уреди] Units

In order to numerically add certain types of numbers, such as vulgar fractions and physical quantities with units, they must first be expressed with a common denominator. For example, if a measure of 5 feet is extended by 2 inches, the sum is 62 inches, since 60 inches is synonymous with 5 feet. On the other hand, it is usually meaningless to try to add 3 meters and 4 square meters, since those units are incomparable; this sort of consideration is fundamental in dimensional analysis.

[уреди] Performing addition

[уреди] Innate ability

Studies on mathematical development starting around the 1980s have exploited the phenomenon of habituation: infants look longer at situations that are unexpected.[7] A seminal experiment by Karen Wynn in 1992 involving Mickey Mouse dolls manipulated behind a screen demonstrated that five-month-old infants expect 1 + 1 to be 2, and they are comparatively surprised when a physical situation seems to imply that 1 + 1 is either 1 or 3. This finding has since been affirmed by a variety of laboratories using different methodologies.[8] Another 1992 experiment with older toddlers, between 18 to 35 months, exploited their development of motor control by allowing them to retrieve ping-pong balls from a box; the youngest responded well for small numbers, while older subjects were able to compute sums up to 5.[9]

Even some nonhuman animals show a limited ability to add, particularly primates. In a 1995 experiment imitating Wynn's 1992 result (but using eggplants instead of dolls), rhesus macaques and cottontop tamarins performed similarly to human infants. More dramatically, after being taught the meanings of the Arabic numerals 0 through 4, one chimpanzee was able to compute the sum of two numerals without further training.[10]

[уреди] Elementary methods

Typically children master the art of counting first, and this skill extends into a form of addition called "counting-on"; asked to find three plus two, children count two past three, saying "four, five", and arriving at five. This strategy seems almost universal; children can easily pick it up from peers or teachers, and some even invent it independently.[11] Those who count to add also quickly learn to exploit the commutativity of addition by counting up from the larger number.

[уреди] Decimal system

Слика:AdditionTable.svg
Single-digit addition table with various strategies colored: 0 in blue; 1,2 in light blue; (near) doubles in (light) green; making ten in red; 5,10 in gray.[12]

The prerequisitive to addition in the decimal system is the internalization of the 100 single-digit "addition facts". One could memorize all the facts by rote, but pattern-based strategies are more enlightening and, for most people, more efficient:[13]

  • One or two more: Adding 1 or 2 is a basic task, and it can be accomplished through counting on or, ultimately, intuition.
  • Zero: Since zero is the additive identity, adding zero is trivial. Nonetheless, some children are introduced to addition as a process that always increases the addends; word problems may help rationalize the "exception" of zero.
  • Doubles: Adding a number to itself is related to counting by two and to multiplication. Doubles facts form a backbone for many related facts, and fortunately, children find them relatively easy to grasp. near-doubles...
  • Five and ten...
  • Making ten: An advanced strategy uses 10 as an intermediate for sums involving 8 or 9; for example, 8 + 6 = 8 + 2 + 4 = 10 + 4 = 14.

In traditional mathematics, to add multidigit numbers, one typically aligns the addends vertically and adds the columns, starting from the ones column on the right. If a column exceeds ten, the extra digit is "carried" into the next column.[14] For a more detailed description of this algorithm, see Elementary arithmetic: Addition. An alternate strategy starts adding from the most significant digit on the left; this route makes carrying a little clumsier, but it is faster at getting a rough estimate of the sum. There are many different standards-based mathematics methods, but many mathematics curricula such as TERC omit any instruction in traditional methods familiar to parents or mathematics professionals in favor of exploration of new methods.

  • Fraction: Addition
  • Scientific notation: Operations
  • Roman arithmetic: Addition

[уреди] Computers

Addition with an op-amp. See Summing amplifier for details.
Addition with an op-amp. See Summing amplifier for details.

Analog computers work directly with physical quantities, so their addition mechanisms depend on the form of the addends. A mechanical adder might represent two addends as the positions of sliding blocks, in which case they can be added with an averaging lever. If the addends are the rotation speeds of two shafts, they can be added with a differential. A hydraulic adder can add the pressures in two chambers by exploiting Newton's second law to balance forces on an assembly of pistons. The most common situation for a general-purpose analog computer is to add two voltages (referenced to ground); this can be accomplished roughly with a resistor network, but a better design exploits an operational amplifier.[15]

Addition is also fundamental to the operation of digital computers, where the efficiency of addition, in particular the carry mechanism, is an important limitation to overall performance.

Part of Charles Babbage's Difference Engine including the addition and carry mechanisms
Part of Charles Babbage's Difference Engine including the addition and carry mechanisms

Adding machines, mechanical calculators whose primary function was addition, were the earliest automatic, digital computers. Wilhelm Schickard's 1623 Calculating Clock could add and subtract, but it was severely limited by an awkward carry mechanism. As he wrote to Johannes Kepler describing the novel device, "You would burst out laughing if you were present to see how it carries by itself from one column of tens to the next..." Adding 999,999 and 1 on Schickard's machine would require enough force to propagate the carries that the gears might be damaged, so he limited his machines to six digits, even though Kepler's work required more. By 1642 Blaise Pascal independently developed an adding machine with an ingenious gravity-assisted carry mechanism. Pascal's calculator was limited by its carry machanism in a different sense: its wheels turned only one way, so it could add but not subtract, except by the method of complements. By 1674 Gottfried Leibniz made the first mechanical multiplier; it was still powered, if not motivated, by addition.[16]

"Full adder" logic circuit that adds two binary digits, A and B, along with a carry input Ci, producing the sum bit, S, and a carry output, Co.
"Full adder" logic circuit that adds two binary digits, A and B, along with a carry input Ci, producing the sum bit, S, and a carry output, Co.

Adders execute integer addition in electronic digital computers, usually using binary arithmetic. The simplest architecture is the ripple carry adder, which follows the standard multi-digit algorithm taught to children. One slight improvement is the carry skip design, again following human intuition; one does not perform all the carries in computing 999 + 1, but one bypasses the group of 9s and skips to the answer.[17]

Since they compute digits one at a time, the above methods are too slow for most modern purposes. In modern digital computers, integer addition is typically the fastest arithmetic instruction, yet it has the largest impact on performance, since it underlies all the floating-point operations as well as such basic tasks as address generation during memory access and fetching instructions during branching. To increase speed, modern designs calculate digits in parallel; these schemes go by such names as carry select, carry lookahead, and the Ling pseudocarry. Almost all modern implementations are, in fact, hybrids of these last three designs.[18]

Unlike addition on paper, addition on a computer often changes the addends. On the ancient abacus and adding board, both addends are destroyed, leaving only the sum. The influence of the abacus on mathematical thinking was strong enough that early Latin texts often claimed that in the process of adding "a number to a number", both numbers vanish.[19] In modern times, the ADD instruction of a microprocessor replaces the augend with the sum but preserves the addend.[20] In a high-level programming language, evaluating a + b does not change either a or b; to change the value of a one uses the addition assignment operator a += b.

[уреди] Дефиниције и докази за реалне бројеве

Како би се доказала уобичајена својства сабирања, неопходно је прво дефинисати сабирање у датом контексту. Сабирање се прво дефинише за природне бројеве. У теорији скупова, сабирање ес затим проширује на шире скупове који у себи садрже природне бројеве: целе бројеве, рационалне бројеве, и реалне бројевеs.

[уреди] Природни бројеви

Постоје два уобичајена начина да се дефинише збир два природна броја, a и b. Ако природне бројеве дефинишемо као кардиналност коначних скупова, тада њихов збир дефинишемо на следећи начин:

  • Нека је N(S) кардиналност скупа S. Узмимо два дисјунктна скупа A и B, са N(A) = a и N(B) = b. Тада је a + b дефинисано као N(A U B).[21]

Овде је A U B унија скупва A и B. Алтернатвина верзија ове дефиниције допушта да се A и B преклапају, па узима њихову дисјунктну унију.

Друга уобичајена дефиниција је рекурзивна:

  • Нека је n+ наследник броја n. Дефинишемо a + 0 = a. Општу суму дефинишемо рекурзивно формулом a + (b+) = (a + b)+.[22]

Такође, и код ове дефиниције се јављају мање варијације у литератури. Дословно посматрано, горња дефиниција је примена Теореме рекурзије на парцијално уређен скуп N2.

[уреди] Integers

Слика:GrothInt.svg
Defining (-2) + 1 using only addition of positive numbers: (2 − 4) + (3 − 2) = 5 − 6.

Шаблон:Further The simplest conception of an integer is that it consists of an absolute value (which is a natural number) and a sign (generally either positive or negative). The integer zero is a special third case, being neither positive nor negative. The corresponding definition of addition must proceed by cases:

  • For an integer n, let |n| be its absolute value. Let a and b be integers. If either a or b is zero, treat it as an identity. If a and b are both positive, define a + b = |a| + |b|. If a and b are both negative, define a + b = −(|a|+|b|). If a and b have different signs, define a + b to be the difference between |a| and |b|, with the sign of the term whose absolute value is larger.[23]

Although this definition can be useful for concrete problems, it is far too complicated to produce elegant general proofs; there are too many cases to consider.

A much more convenient conception of the integers is the Grothendieck group construction. The essential observation is that every integer can be expressed (not uniquely) as the difference of two natural numbers, so we may as well define an integer as the difference of two natural numbers. Addition is then defined to be compatible with subtraction:

  • Given two integers ab and cd, where a, b, c, and d are natural numbers, define (ab) + (cd) = (a + c) − (b + d).[24]

[уреди] Рационални бројеви (разломци)

Сабирање рационалних бројева се може извести помоћу најмањег заједничког садржаоца, али концептуално једноставнија дефиниција користи само сабирање целих бројева, и множење:

  • Дефинишемо    \frac ab + \frac cd = \frac{ad+bc}{bd}.

Комутативност и асоцијативност сабирања рационалних бројева је једноставна последица закона целобројнеа аритметике.

[уреди] Reals

Слика:AdditionRealDedekind.svg
Adding π2/6 and e using Dedekind cuts of rationals

Шаблон:Further A common construction of the set of real numbers is the Dedekind completion of the set of rational numbers. A real number is defined to be a Dedekind cut of rationals: a non-empty set of rationals that is closed downward and has no greatest element. The sum of real numbers a and b is defined element by element:

This definition was first published, in a slightly modified form, by Richard Dedekind in 1872.[26] The commutativity and associativity of real addition are immediate; defining the real number 0 to be the set of negative rationals, it is easily seen to be the additive identity. Probably the trickiest part of this construction pertaining to addition is the definition of additive inverses.[27]

Слика:AdditionRealCauchy.svg
Adding π2/6 and e using Cauchy sequences of rationals

Unfortunately, dealing with multiplication of Dedekind cuts is a case-by-case nightmare similar to the addition of signed integers. Another approach is the metric completion of the rational numbers. A real number is essentially defined to be the a limit of a Cauchy sequence of rationals, lim an. Addition is defined term by term:

This definition was first published by Georg Cantor, also in 1872, although his formalism was slightly different.[29] One must prove that this operation is well-defined, dealing with co-Cauchy sequences. Once that task is done, all the properties of real addition follow immediately from the properties of rational numbers. Furthermore, the other arithmetic operations, including multiplication, have straightforward, analogous definitions.[30]

[уреди] Generalizations

There are many things that can be added: numbers, vectors, matrices, spaces, shapes, sets, functions, equations, strings, chains...Alexander Bogomolny

Real addition extends to addition operations on even larger sets, such as the set of complex numbers or a many-dimensional vector space in linear algebra.

  • Vector: Vector addition

[уреди] In algebra

There are many more sets that support an operation called addition.

There are already infinitely many natural numbers, and the set of real numbers is even larger. It is also useful to study addition on smaller sets, even finite ones. In modular arithmetic, the set of integers modulo 12 has twelve elements; it inherits an addition operation from the integers that is central to musical set theory. The set of integers modulo 2 has just two elements; the addition operation it inherits is known in Boolean logic as "exclusive or".

The ideas of extending and compacting sets can be combined. In geometry, the sum of two angles is often taken to be their sum as two real numbers modulo 2π. This amounts to an addition operation on the circle, which in turn generalizes to addition operations on many-dimensional tori.

A general form of addition occurs in abstract algebra, where addition may be almost any well-defined binary operation on a set. For an operation to be called "addition" in abstract algebra, it is required to be associative and commutative. Basic algebraic structures with an addition operation include commutative monoids and abelian groups.

[уреди] Addition of sets

One extraordinary generalization of the addition of natural numbers is the addition of ordinal numbers. Unlike most addition operations, ordinal addition is not commutative. However, passing to the "smaller" class of cardinal numbers, we recover a commutative operation. Cardinal addition is closely related to the disjoint union of two sets. In category theory, the disjoint union is a kind of coproduct, so coproducts are perhaps the most abstract of all the generalizations of addition. Some coproducts are named to evoke their connection with addition; see Direct sum and Wedge sum.

[уреди] Related operations

[уреди] Arithmetic

Subtraction can be thought of as a kind of addition—that is, the addition of an additive inverse. Subtraction is itself a sort of inverse to addition, in that adding x and subtracting x are inverse functions.

Given a set with an addition operation, one cannot always define a corresponding subtraction operation on that set; the set of natural numbers is a simple example. On the other hand, a subtraction operation uniquely determines an addition operation, an additive inverse operation, and an additive identity; for this reason, an additive group can be described as a set that is closed under subtraction.[31]

Multiplication can be thought of as repeated addition. If a single term x appears in a sum n times, then the sum is the product of n and x. If n is not a natural number, the product may still make sense; for example, multiplication by −1 yields the additive inverse of a number.

A circular slide rule
A circular slide rule

In the real and complex numbers, addition and multiplication can be interchanged by the exponential function:

ea + b = ea eb.[32]

This identity allows multiplication to be carried out by consulting a table of logarithms and computing addition by hand; it also enables multiplication on a slide rule. The formula is still a good first-order approximation in the broad context of Lie groups, where it relates multiplication of infinitesimal group elements with addition of vectors in the associated Lie algebra.[33]

There are even more generalizations of multiplication than addition.[34] In general, multiplication operations always distribute over addition; this requirement is formalized in the definition of a ring. In some contexts, such as the integers, distributivity over addition and the existence of a multiplicative identity is enough to uniquely determine the multiplication operation. The distributive property also provides information about addition; by expanding the product (1 + 1)(a + b) in both ways, one concludes that addition is forced to be commutative. For this reason, ring addition is commutative in general.[35]

Division is an arithmetic operation remotely related to addition. Since a/b = a(b−1), division is right distributive over addition: (a + b) / c = a / c + b / c.[36] However, division is not left distributive over addition; 1/ (2 + 2) is not the same as 1/2 + 1/2.

[уреди] Ordering

Слика:XPlusOne.svg
Log-log plot of x + 1 and max (x, 1) from x = 0.001 to 1000[37]

The maximum operation "max (a, b)" is a binary operation similar to addition. In fact, if two nonnegative numbers a and b are of different orders of magnitude, then their sum is approximately equal to their maximum. This approximation is extremely useful in the applications of mathematics, for example in truncating Taylor series. However, it presents a perpetual difficulty in numerical analysis, essentially since "max" is not invertible. If b is much greater than a, then a straightforward calculation of (a + b) - b can accumulate an unacceptable round-off error, perhaps even returning zero. See also Loss of significance.

The approximation becomes exact in a kind of infinite limit; if either a or b is an infinite cardinal number, their cardinal sum is exactly equal to the greater of the two.[38] Accordingly, there is no subtraction operation for infinite cardinals.[39]

Maximization is commutative and associative, like addition. Furthermore, since addition preserves the ordering of real numbers, addition distributes over "max" in the same way that multiplication distributes over addition:

a + max (b, c) = max (a + b, a + c).

For these reasons, in tropical geometry one replaces multiplication with addition and addition with maximization. In this context, addition is called "tropical multiplication", maximization is called "tropical addition", and the tropical "additive identity" is negative infinity.[40] Some authors prefer to replace addition with minimization; then the additive identity is positive infinity.[41]

Tying these observations together, tropical addition is approximately related to regular addition through the logarithm:

log (a + b) ≈ max (log a, log b),

which becomes more accurate as the base of the logarithm increases.[42] The approximation can be made exact by extracting a constant h, named by analogy with Planck's constant from quantum mechanics,[43] and taking the "classical limit" as h tends to zero:

\max(a,b) = \lim_{h\to 0}h\log(e^{a/h}+e^{b/h}).

In this sense, the maximum operation is a dequantized version of addition.[44]

[уреди] Other ways to add

Incrementation, also known as the successor operation, is the addition of 1 to a number.

Summation describes the addition of arbitrarily many numbers, usually more than just two. It includes the idea of the sum of a single number, which is itself, and the empty sum, which is zero.[45] An infinite summation is a delicate procedure known as a series.[46]

Counting a finite set is equivalent to summing 1 over the set.

Integration is a kind of "summation" over a continuum, or more precisely and generally, over a differentiable manifold. Integration over a zero-dimensional manifold reduces to summation.

Linear combinations combine multiplication and summation; they are sums in which each term has a multiplier, usually a real or complex number. Linear combinations are especially useful in contexts where straightforward addition would violate some normalization rule, such as mixing of strategies in game theory or superposition of states in quantum mechanics.

Convolution is used to add two independent random variables defined by distribution functions. Its usual definition combines integration, subtraction, and multiplication. In general, convolution is useful as a kind of domain-side addition; by contrast, vector addition is a kind of range-side addition.

[уреди] In literature

  • In chapter 9 of Lewis Carroll's Through the Looking-Glass, the White Queen asks Alice, "And you do Addition? ... What's one and one and one and one and one and one and one and one and one and one?" Alice admits that she lost count, and the Red Queen declares, "She can't do Addition".
  • In George Orwell's Nineteen Eighty-Four, the value of 2 + 2 is questioned; the State contends that if it declares 2 + 2 = 5, then it is so. See Two plus two make five for the history of this idea.

[уреди] Notes

  1. ^ Из Enderton (стр. 138): "...select two sets K and L with card K = 2 and card L = 3. Sets of fingers are handy; sets of apples are preferred by textbooks."
  2. ^ Adding it up (p.73) упоређује сабирање мерењем штапића са сабирањем скупова мачака: "На пример, инчи се могу поделити у делове, које је тешко разликовати од целих инча, осим што су краћи; док је за мачке врло болно да се поделе у делове, а и то озбиљно измењује њихову природу."
  3. ^ Stewart makes the distinction by writing angle brackets for vectors and parentheses for points, although this notation is not widely used. See the chapter Vectors.
  4. ^ Weaver (p.62) argues for the importance of contrasting the two views, going so far as to term the version of commutativity satisfied by unary addition "pseudocommutativity".
  5. ^ Enderton (p.142, Theorem 6I) discusses this relationship in the context of cardinal arithmetic identities.
  6. ^ Kaplan pp.69–71
  7. ^ Wynn p.5
  8. ^ Wynn p.15
  9. ^ Wynn p.17
  10. ^ Wynn p.19
  11. ^ F. Smith p.130
  12. ^ Compare figures in Van de Walle pp.160–164
  13. ^ Fosnot and Dolk p.99
  14. ^ The word "carry" may be inappropriate for education; Van de Walle (p.211) calls it "obsolete and conceptually misleading", preferring the word "trade".
  15. ^ Truitt and Rogers pp.1;44–49 and pp.2;77–78
  16. ^ Williams pp.122–140
  17. ^ Flynn and Overman pp.2, 8
  18. ^ Flynn and Overman pp.1–9
  19. ^ Karpinski pp.102–103
  20. ^ The identity of the augend and addend varies with architecture. For ADD in x86 see Horowitz and Hill p.679; for ADD in 68k see p.767.
  21. ^ Begle p.49, Johnson p.120, Devine et al p.75
  22. ^ Enderton p.79
  23. ^ K. Smith p.234, Sparks and Rees p.66
  24. ^ Enderton p.92
  25. ^ Enderton p.114
  26. ^ Ferreirós p.135; see section 6 of Stetigkeit und irrationale Zahlen.
  27. ^ The intuitive approach, inverting every element of a cut and taking its complement, works only for irrational numbers; see Enderton p.117 for details.
  28. ^ Textbook constructions are usually not so cavalier with the "lim" symbol; see Burrill (p.138) for a more careful, drawn-out development of addition with Cauchy sequences.
  29. ^ Ferreirós p.128
  30. ^ Burrill p.140
  31. ^ The set still must be nonempty. Dummit and Foote (p.48) discuss this criterion written multiplicatively.
  32. ^ Rudin p.178
  33. ^ Lee p.526, Proposition 20.9
  34. ^ Linderholm (p.49) observes, "By multiplication, properly speaking, a mathematician may mean practically anything. By addition he may mean a great variety of things, but not so great a variety as he will mean by 'multiplication'."
  35. ^ Dummit and Foote p.224. For this argument to work, one still must assume that addition is a group operation and that multiplication has an identity.
  36. ^ For an example of left and right distributivity, see Loday, especially p.15.
  37. ^ Compare Viro Figure 1 (p.2)
  38. ^ Enderton calls this statement the "Absorption Law of Cardinal Arithmetic"; it depends on the comparability of cardinals and therefore on the Axiom of Choice.
  39. ^ Enderton p.164
  40. ^ Mikhalkin p.1
  41. ^ Akian et al p.4
  42. ^ Mikhalkin p.2
  43. ^ Litvinov et al p.3
  44. ^ Viro p.4
  45. ^ Martin p.49
  46. ^ Stewart p.8

[уреди] References

History
  • Bunt, Jones, and Bedient (1976). The historical roots of elementary mathematics. Prentice-Hall. ISBN 0-13-389015-5.
  • Ferreirós, José (1999). Labyrinth of thought: A history of set theory and its role in modern mathematics. Birkhäuser. ISBN 0-8176-5749-5.
  • Kaplan, Robert (2000). The nothing that is: A natural history of zero. Oxford UP. ISBN 0-19-512842-7.
  • Karpinski, Louis (1925). The history of arithmetic. Rand McNally. Шаблон:LCC.
  • Schwartzman, Steven (1994). The words of mathematics: An etymological dictionary of mathematical terms used in English. MAA. ISBN 0-88385-511-9.
  • Williams, Michael (1985). A history of computing technology. Prentice-Hall. ISBN 0-13-389917-9.
Elementary mathematics
  • Davison, Landau, McCracken, and Thompson (1999). Mathematics: Explorations & Applications, TE, Prentice Hall. ISBN 0-13-435817-1.
  • F. Sparks and C. Rees (1979). A survey of basic mathematics. McGraw-Hill. ISBN 0-07-059902-5.
Education
Cognitive science
  • Шаблон:Cite conference
  • Fosnot and Dolk (2001). Young mathematicians at work: Constructing number sense, addition, and subtraction. Heinemann. ISBN 0-325-00353-X.
  • Шаблон:Cite conference
  • Шаблон:Cite conference
Mathematical exposition
  • Bogomolny, Alexander (1996). Addition. Interactive Mathematics Miscellany and Puzzles (cut-the-knot.org). Постављено 3 February, 2006.
  • Dunham, William (1994). The mathematical universe. Wiley. ISBN 0-471-53656-3.
  • Johnson, Paul (1975). From sticks and stones: Personal adventures in mathematics. Science Research Associates. ISBN 0-574-19115-1.
  • Linderholm, Carl (1971). Mathematics made difficult. Wolfe. ISBN 0-7234-0415-1.
  • Smith, Frank (2002). The glass wall: Why mathematics can seem difficult. Teachers College Press. ISBN 0-8077-4242-2.
  • Smith, Karl (1980). The nature of modern mathematics, 3e, Wadsworth. ISBN 0-8185-0352-1.
Advanced mathematics
Mathematical research
Computing
  • M. Flynn and S. Oberman (2001). Advanced computer arithmetic design. Wiley. ISBN 0-471-41209-0.
  • P. Horowitz and W. Hill (2001). The art of electronics, 2e, Cambridge UP. ISBN 0-521-37095-7.
  • Jackson, Albert (1960). Analog computation. McGraw-Hill. Шаблон:LCC.
  • T. Truitt and A. Rogers (1960). Basics of analog computers. John F. Rider. Шаблон:LCC.