Türev alma kuralları

Vikipedi, özgür ansiklopedi

Türev, Matematikteki ve özellikle diferansiyeldeki temel kavramlardan biridir. Aşağıdaki tabloda bazı fonksiyonların türev kurallarını göreceksiniz.

Aşağıda, f ve g türevlenebilir fonksiyonlar ve c reel sayıdır.


Konu başlıkları

[değiştir] Genel fonksiyonların Türev Kuralları

Temel Kurallar
\left({cf}\right)' = cf'
\left({f + g}\right)' = f' + g'
\left({f - g}\right)' = f' - g'
Çarpım Kuralı
\left({fg}\right)' = f'g + fg'
Bölüm Kuralı
\left({f \over g}\right)' = {f'g - fg' \over g^2}, \qquad g \ne 0
Üst kuralı
(f^g)' = \left(e^{g\ln f}\right)' = f^g\left(f'{g \over f} + g'\ln f\right),\qquad f > 0
Zincir kuralı
(f \circ g)' = (f' \circ g)g'
Logaritma kuralı
f' = (\ln f)'f, \qquad f > 0

[değiştir] Basit Fonksiyonların Türevleri

{d \over dx} c =0
{d \over dx} x = 1
{d \over dx} cx = c
{d \over dx} |x| = {x \over |x|} = \sgn x,\qquad x \ne 0
{d \over dx} x^c = cx^{c-1} \qquad \mbox{ } x^c \mbox{ ve } cx^{c-1} \mbox { tanimli oldugunda}
{d \over dx} \left({1 \over x}\right) = {d \over dx} \left(x^{-1}\right) = -x^{-2} = -{1 \over x^2}
{d \over dx} \left({1 \over x^c}\right) = {d \over dx} \left(x^{-c}\right) = -{c \over x^{c+1}}
{d \over dx} \sqrt{x} = {d \over dx} x^{1\over 2} = {1 \over 2} x^{-{1\over 2}}  = {1 \over 2 \sqrt{x}}, \qquad x > 0

[değiştir] Üstel Fonksiyonların ve Logaritmik Fonksiyonlarıın Türevleri

{d \over dx} c^x = {c^x \ln c},\qquad c > 0
{d \over dx} e^x = e^x
{d \over dx} \log_c x = {1 \over x \ln c},\qquad c > 0, c \ne 1
{d \over dx} \ln x = {1 \over x}
{d \over dx}  x^y = ?  ,  x = func. , y = func.

[değiştir] Trigonometrik Fonksiyonların Türevleri

{d \over dx} \sin x = \cos x
{d \over dx} \cos x = -\sin x
{d \over dx} \tan x = \sec^2 x
{d \over dx} \sec x = \tan x \sec x
{d \over dx} \cot x = -\csc^2 x
{d \over dx} \csc x = -\csc x \cot x
{d \over dx} \arcsin x = { 1 \over \sqrt{1 - x^2}}
{d \over dx} \arccos x = {-1 \over \sqrt{1 - x^2}}
{d \over dx} \arctan x = { 1 \over 1 + x^2}
{d \over dx} \arcsec x = { 1 \over |x|\sqrt{x^2 - 1}}
{d \over dx} \arccot x = {-1 \over 1 + x^2}
{d \over dx} \arccsc x = {-1 \over |x|\sqrt{x^2 - 1}}

[değiştir] Hiperbolik Fonksiyonların Türevleri

{d \over dx} \sinh x = \cosh x
{d \over dx} \cosh x = \sinh x
{d \over dx} \tanh x = \mbox{sech}^2 x
{d \over dx} \mbox{sech} x = - \tanh x \mbox{sech} x
{d \over dx} \mbox{coth} x = - \mbox{csch}^2 x
{d \over dx} \mbox{csch} x = - \mbox{coth} x \mbox{csch} x
{d \over dx} \mbox{arcsinh} x = { 1 \over \sqrt{x^2 + 1}}
{d \over dx} \mbox{arccosh} x = { 1 \over \sqrt{x^2 - 1}}
{d \over dx} \mbox{arctanh} x = { 1 \over 1 - x^2}
{d \over dx} \mbox{arcsech} x = { 1 \over x\sqrt{1 - x^2}}
{d \over dx} \mbox{arccoth} x = { 1 \over 1 - x^2}
{d \over dx} \mbox{arccsch} x = {-1 \over |x|\sqrt{1 + x^2}}