Sayılabilirlik

Vikipedi, özgür ansiklopedi

Bir kümedeki eleman sayısıyla doğal sayılar arasında birebir eşleme kurulabilme durumu. 19. yüzyılın sonlarına kadar matematikte farklı büyüklüklerde sonsuzların olabileceğinden şüphelenilmiyordu. Ancak Alman matematikçi Georg Cantor'un reel sayıların sayılamayacağını ispatlamasının ardından matematikte farklı büyüklüklerde sonsuzlukların var olduğu anlaşıldı. Peki iki sonsuz sayıyı karşılaştırmaktan anlaşılan nedir? Diyelim ki elimizde A ve B isimli iki sonsuz küme var ve bunların eleman sayılarına sırasıyla a ve b diyelim. Eğer A kümesinden B kümesine birebir bir fonksiyon tanımlanabiliyorsa bu durumda a \geq b denir. Bu tanım Seçim Aksiyomu'nun varsayıldığı durumlarda bize sonsuz büyüklükler arasında bir doğrusal sıralama verir, yani kısaca bütün sonsuzluklar birbiriyle karşılaştırılabilirdir. İşte bu durumda, sayılabilirlik en küçük sonsuz büyüklüğü ifade eder, ancak bazı yazarlar sayılabilirliği aynı zamanda "ya sonlu ya da sayılabilir sonsuz olma" durumu için de kullanırlar. Süreklilik Hipotezi ise doğal sayıların kümesinin büyüklüğü ile reel sayıların kümesinin büyüklüğü arasında başka büyüklük olmadığını ifade eden aksiyomdur.

Sayılabilir kümelere örnekler:


Doğal Sayılar -- Tam Sayılar -- Rasyonel Sayılar -- Asal Sayılar


Sayılamaz kümelere örnekler:


Reel Sayılar -- Kompleks Sayılar -- Cantor'un Kümesi -- Doğal sayıların alt kümelerinin kümesi