Dosiero:Rotation illustration.png

El Vikipedio

Wikimedia Commons Logo Tiu dosiero elĉerpiĝas de la Vikimedia Komunejo, kolekto de libere uzeblaj bildoj.
Vidu ĝian paĝon ĉe la Komunejo por permesinformo kaj historio de redaktado.

La bildo estas kopiita de wikipedia:en. La originala priskribo estas:

Contents

[edit] Summary

Made by myself with matlab.

[edit] Licensing

Public domain I, the author of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Български | Català | Česky | Dansk | Deutsch | Ελληνικά | English | Español | Esperanto | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Latina | Lietuvių | Magyar | Bahasa Melayu | Nederlands | Norsk (bokmål) | Norsk (nynorsk) | 日本語 | Polski | Português | Ripoarish | Română | Русский | Slovenčina | Slovenščina | Српски | Svenska | ไทย | Türkçe | Українська | Tiếng Việt | Walon | 简体中文 | 繁體中文 | +/-


[edit] Source code (very messy)


function main()

% prepare the screen
figure(1); clf; hold on; axis equal;  axis off; 
linewidth=2;

x=[0, 0.7, 0.5 1, 0]+2; y=[0, 0, 0.5, 1 0.8];
do_plot(x, y, linewidth);

theta=pi/3; A=[cos(theta) -sin(theta); sin(theta) cos(theta)];
for i=1:length(x)
  v= A*[x(i); y(i)]; x(i)=v(1); y(i)=v(2); 
end
do_plot(x, y, linewidth);

red=[1 0 0]; ball_radius=0.025;
x=2.1; y=0.5; plot([0 x], [0, y], 'color', red, 'linewidth', linewidth);
ball(x, y, ball_radius, red);

v= A*[x; y]; x=v(1); y=v(2); plot([0 x], [0, y], 'color', red, 'linewidth', linewidth);
ball(x, y, ball_radius, red);
ball(0, 0, ball_radius, red);

x=1.1*1.9681; y=1.1*0.9548; r=sqrt(x^2+y^2); thetas=atan2(y, x);
thetae=pi/6.2+thetas;
Theta=thetas:0.01:thetae; X=r*cos(Theta); Y=r*sin(Theta); plot(X, Y, 'linewidth', linewidth)
n=length(Theta);

arrow([X(n-1), Y(n-1)], [2*X(n)-X(n-1), 2*Y(n)-Y(n-1)], linewidth, 10, pi/6, 2, [0, 0, 1])
   
saveas(gcf, 'rotation_illustration.eps', 'psc2') 

function do_plot(x, y, linewidth)
 n=length(x); 
 P=5; Q=n+2*P+1; % P will denote the amount of overlap

% Make the 'periodic' sequence xp=[x(1) x(2) x(3) ... x(n) x(1) x(2) x(3) ... ]
% of length Q. Same for yp.
for i=1:Q
   j=rem(i, n)+1; % rem() is the remainder of division of i by n
   xp(i)=x(j);
   yp(i)=y(j);
end

% do the spline interpolation
t=1:length(xp);
N=100; % how fine to make the interpolation
tt=1:(1/N):length(xp);
xx=spline(t, xp, tt);
yy=spline(t, yp, tt);

% discard the reduntant pieces
start=N*(P-1)+1;
stop=N*(n+P-1)+1;
xx=xx(start:stop); 
yy=yy(start:stop);

lightblue=[176,196,222]/256;
H=fill(xx, yy, lightblue);

set(H, 'linewidth', 0.001, 'edgecolor', lightblue);

function arrow(start, stop, thickness, arrowsize, sharpness, arrow_type, color)

   
%  draw a line with an arrow at the end
%  start is the x,y point where the line starts
%  stop is the x,y point where the line stops
%  thickness is an optional parameter giving the thickness of the lines   
%  arrowsize is an optional argument that will give the size of the arrow 
%  It is assumed that the axis limits are already set
%  0 < sharpness < pi/4 determines how sharp to make the arrow
%  arrow_type draws the arrow in different styles. Values are 0, 1, 2, 3.
   
%       8/4/93    Jeffery Faneuff
%       Copyright (c) 1988-93 by the MathWorks, Inc.
%       Modified by Oleg Alexandrov 2/16/03

   
   if nargin <=6
      color=[0, 0, 0];
   end
   
   if (nargin <=5)
      arrow_type=0;   % the default arrow, it looks like this: ->
   end
   
   if (nargin <=4)
      sharpness=pi/4; % the arrow sharpness - default = pi/4
   end

   if nargin<=3
      xl = get(gca,'xlim');
      yl = get(gca,'ylim');
      xd = xl(2)-xl(1);            
      yd = yl(2)-yl(1);            
      arrowsize = (xd + yd) / 2;   % this sets the default arrow size
   end

   if (nargin<=2)
      thickness=0.5; % default thickness
   end
   
   
   xdif = stop(1) - start(1);
   ydif = stop(2) - start(2);

   if (xdif == 0)
      if (ydif >0) 
         theta=pi/2;
      else
         theta=-pi/2;
      end
   else
      theta = atan(ydif/xdif);  % the angle has to point according to the slope
   end

   if(xdif>=0)
      arrowsize = -arrowsize;
   end

   if (arrow_type == 0) % draw the arrow like two sticks originating from its vertex
      xx = [start(1), stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)),NaN,stop(1),...
            (stop(1)+0.02*arrowsize*cos(theta-sharpness))];
      yy = [start(2), stop(2), (stop(2)+0.02*arrowsize*sin(theta+sharpness)),NaN,stop(2),...
            (stop(2)+0.02*arrowsize*sin(theta-sharpness))];
      plot(xx,yy, 'LineWidth', thickness, 'color', color)
   end

   if (arrow_type == 1)  % draw the arrow like an empty triangle
      xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
            stop(1)+0.02*arrowsize*cos(theta-sharpness)];
      xx=[xx xx(1) xx(2)];
      
      yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
            stop(2)+0.02*arrowsize*sin(theta-sharpness)];
      yy=[yy yy(1) yy(2)];

      plot(xx,yy, 'LineWidth', thickness, 'color', color)
      
%     plot the arrow stick
      plot([start(1) stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness)], [start(2), stop(2)+ ...
                    0.02*arrowsize*sin(theta)*cos(sharpness)], 'LineWidth', thickness, 'color', color)
      
   end
   
   if (arrow_type==2) % draw the arrow like a full triangle
      xx = [stop(1),(stop(1)+0.02*arrowsize*cos(theta+sharpness)), ...
            stop(1)+0.02*arrowsize*cos(theta-sharpness),stop(1)];
      
      yy = [stop(2),(stop(2)+0.02*arrowsize*sin(theta+sharpness)), ...
            stop(2)+0.02*arrowsize*sin(theta-sharpness),stop(2)];
      
%     plot the arrow stick
      plot([start(1) stop(1)+0.01*arrowsize*cos(theta)], [start(2), stop(2)+ ...
                    0.01*arrowsize*sin(theta)], 'LineWidth', thickness, 'color', color)
      H=fill(xx, yy, color);% fill with black
      set(H, 'EdgeColor', 'none')

   end

   if (arrow_type==3) % draw the arrow like a filled 'curvilinear' triangle
      curvature=0.5; % change here to make the curved part more curved (or less curved)
      radius=0.02*arrowsize*max(curvature, tan(sharpness));
      x1=stop(1)+0.02*arrowsize*cos(theta+sharpness);
      y1=stop(2)+0.02*arrowsize*sin(theta+sharpness);
      x2=stop(1)+0.02*arrowsize*cos(theta)*cos(sharpness);
      y2=stop(2)+0.02*arrowsize*sin(theta)*cos(sharpness);
      d1=sqrt((x1-x2)^2+(y1-y2)^2);
      d2=sqrt(radius^2-d1^2);
      d3=sqrt((stop(1)-x2)^2+(stop(2)-y2)^2);
      center(1)=stop(1)+(d2+d3)*cos(theta);
      center(2)=stop(2)+(d2+d3)*sin(theta);

      alpha=atan(d1/d2);
      Alpha=-alpha:0.05:alpha;
      xx=center(1)-radius*cos(Alpha+theta);
      yy=center(2)-radius*sin(Alpha+theta);
      xx=[xx stop(1) xx(1)];
      yy=[yy stop(2) yy(1)];


%     plot the arrow stick
      plot([start(1) center(1)-radius*cos(theta)], [start(2), center(2)- ...
                    radius*sin(theta)], 'LineWidth', thickness, 'color', color);

      H=fill(xx, yy, color);% fill with black
      set(H, 'EdgeColor', 'none')

   end

date/time username edit summary
00:36, 22 November 2005 en:User:Oleg Alexandrov (+source code)
14:06, 3 November 2005 en:User:Oleg Alexandrov (Made by myself with matlab.)

[edit] Historio de la dosiero

Legend: (cur) = this is the current file, (del) = delete this old version, (rev) = revert to this old version.

Click on date to download the file or see the image uploaded on that date.

La jenaj paĝoj ligas al ĉi tiu dosiero: