Dosiero:Transformation (after).png

El Vikipedio

Wikimedia Commons Logo Tiu dosiero elĉerpiĝas de la Vikimedia Komunejo, kolekto de libere uzeblaj bildoj.
Vidu ĝian paĝon ĉe la Komunejo por permesinformo kaj historio de redaktado.

[edit] Summary

This image is part of a collection of 2 plots of mathemical functions (other: image:Transformation_(before).png). They show a strongly non-linear w:transformation (mathematics) being applied to a simple function (a plane through the origin). The plane is transformed into a a curved surface.

The transformaton is the following: ( {u,v,w} )\mapsto {{e^{u+v}},{e^{u-v}},\cos \left( w \right) }


legend:

blue dot
reference point
red dots
reference square
green dots
the reference square transformed by a w:linear approximation of the non-liear transformation.

created with Maple 10 using the following code:

> restart:with(VectorCalculus):with(plots):with(plottools):z:=(x,y)->sin(1/2*x^2-1/4*y^2+3)*cos(2*x+1-exp(y)):
> z:=(x,y)->x+y/2:
> t1:=(u,v,w)->(exp(u+v),exp(u-v),cos(w));
> ti:=[t1(x,y,z)];
> bt:=[x,y,z(x,y)];
> bl:=t1(bt[]);
> pc:=[1/2,1/2];
> p0:=[pc[1],pc[2],z(pc[1],pc[2])];
> myunit:=0.3;
> circum:=map(p->[p[1],p[2],z(p[1],p[2])],[(pc+[myunit,i/10*myunit])$i=-10..10,(pc+[-myunit,i/10*myunit])$i=-10..10,(pc+[i/10*myunit,myunit])$i=-10..10,(pc+[i/10*myunit,-myunit])$i=-10..10]):
> i0:=evalf([t1(p0[])]);
> display(plot3d([x,y,z(x,y)],x=-1.2..1.2,y=-1.2..1.2,axes=normal),point(p0,color=blue,symbol=circle,symbolsize=10),'point(circum[i],color=red,symbol=circle,symbolsize=2)'$'i'=1..nops(circum));
> display(plot3d([bl],x=-1.2..1.2,y=-1.2..1.2,axes=normal),point(i0,color=blue,symbol=circle,symbolsize=10),'point([t1(circum[i][])],color=red,symbol=circle,symbolsize=2)'$'i'=1..nops(circum));
> J:=Jacobian(ti,[x,y,z]);
> lindiff:=Matrix(eval(J,{x=p0[1],y=p0[2],z=p0[3]}));
> tl:=(u,v,w)->convert(lindiff.Vector([u,v,w]),list);
> evalf(tl(0,0,0));
> evalf([t1(p0[])]);
> linapp:=map(c->evalf(i0+tl((c-p0)[])),circum):
> display(plot3d([bl],x=-1.2..1.2,y=-1.2..1.2,axes=normal),point(i0,color=blue,symbol=circle,symbolsize=10),'point([t1(circum[i][])],color=red,symbol=circle,symbolsize=2)'$'i'=1..nops(circum),'point(linapp[i],color=green,symbol=circle,symbolsize=2)'$'i'=1..nops(circum));
> display('point(linapp[i]-[t1(circum[i][])],color=green,symbol=circle,symbolsize=2)'$'i'=1..nops(circum));

[edit] Licensing

Public domain I, the author of this work, hereby release it into the public domain. This applies worldwide.

In case this is not legally possible:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Afrikaans | Alemannisch | Aragonés | العربية | Български | Català | Česky | Dansk | Deutsch | Ελληνικά | English | Español | Esperanto | فارسی | Français | Galego | 한국어 | हिन्दी | Hrvatski | Ido | Bahasa Indonesia | Íslenska | Italiano | עברית | Latina | Lietuvių | Magyar | Bahasa Melayu | Nederlands | Norsk (bokmål) | Norsk (nynorsk) | 日本語 | Polski | Português | Ripoarish | Română | Русский | Slovenčina | Slovenščina | Српски | Svenska | ไทย | Türkçe | Українська | Tiếng Việt | Walon | 简体中文 | 繁體中文 | +/-

La jenaj paĝoj ligas al ĉi tiu dosiero: