Teoremo de Pitagoro

El Vikipedio

La teoremo de Pitagoro:La sumo de la areoj de la du kvadratoj kies lateroj kunvenas ĉe orta angulo egalas al la areo de la tria kvadrato.
Pligrandigu
La teoremo de Pitagoro:La sumo de la areoj de la du kvadratoj kies lateroj kunvenas ĉe orta angulo egalas al la areo de la tria kvadrato.

En matematiko, la Teoremo de Pitagoro estas la rilato inter la tri lateroj de orta triangulo. La teoremo estas nomita tiel laŭ la nomo de la antikva Greka matematikisto Pitagoro, unu el pluraj antikvuloj kiuj malkovris ĝin.

La teoremo estas kiel sube:

En ajna orta triangulo, la areo de la kvadrato kun lateroj kies longo egalas al la longo de la hipotenuzo de tiu triangulo (la latero de orta triangulo situanta kontraŭ la orta angulo) estas egala al la sumo de la areoj de la du kvadratoj kun lateroj kies longoj egalas al ambaŭ katetoj (la du lateroj de la orta triangulo kiuj ne estas la hipotenuzo).

Se c estas la longo de la hipotenuzo kaj ankaŭ a kaj b estas la longoj de la du aliaj lateroj (tio estas, la katetoj), la teoremo povas esti skribita kiel sube:

a^2 + b^2 = c^2. \,


La teoremo estas teoria esprimo de la arto disvolvita de hindaj, babilonaj kaj egiptaj konstruistoj kaj sacerdotoj por atingi precize ortajn angulojn por kampojkonstruaĵoj helpe de ŝnuroj. Jam malgranda eraro povas esti katastrofa rezulto por grandaj konstruaĵoj. Pri piramidokonstruaĵoj kun 200-metraj flankoj, konstruistoj ne rajtis erari eĉ ne minimume.

Enhavo

[redaktu] Ŝnurstreĉistoj

Keopso-piramido
Pligrandigu
Keopso-piramido

Por atingi la mirindan precizecon de siaj konstruaĵoj la egipta sacerdotaro havis apartan korporacion, la tiel nomataj "harpedonaptoj", t.e. ŝnurstreĉistoj. Pere de dekdunodaj ŝnuroj la ŝnurstreĉistoj atingis ekzakte ortajn angulojn, dividante dekdu samlongajn erojn de ŝnurego per nodoj je la rilato 5:3:4 kaj kreante per tiu ŝnuro kaj helpe de fostetoj triangulon - tiamaniere kreiĝas ĉiam kaj nur orta angulo (pitagora triopo). Tiun metodon uzis la ŝnurstreĉistoj ankaŭ kiam post la retrofluo de la Nilo necesis mezuri denove la kampojn. Ankaŭ la hindaj sacerdotoj difinis ortajn angulojn, ekzemple por konstrui altarojn, laŭ la sama metodo, sed disdividis siajn triangulojn je la proporcio 39:15:36. Ĉar la teoremo validas ankaŭ en la alia senco, a kaj b ĉirkaŭas la ortan angulon, se la ŝnurlongecoj plenumas la ekvacion a^2 + b^2 = c^2. \, Fakte ambaŭ solvoj ĝustas: 32 + 42 = 52 (egipta) aŭ 152 + 362 = 392 (hinda). Tiel la praktika kono de la babilonoj, hindoj kaj egiptoj ricevis ĝeneralan matematikan esprimon per la teoremo de Pitagoro.

[redaktu] Pitagoro - serĉo pri mondoharmonio

Pieter Bruegel: Konstruo de la Babelturo
Pligrandigu
Pieter Bruegel: Konstruo de la Babelturo

La plej malnovaj matematikaj desegnaĵoj de pitagoraj triopoj kaj eĉ de ilia kvadrateco troviĝas sur babilonaj argilotabuletoj de la Hamurabi-epoko (1829 ĝis 1530 a.K.). La bazo de la teoremo estis do konita longe antaŭ la naskiĝo de la greka matematikisto kaj filozofo Pitagoro el Samoso. Eŭklido nomis la teoremon laŭ Pitagoro, kiu kolektis en sia fama verko erojn de la matematika scienco de sia epoko. Sed Pitagoro mem, kiu ŝajne vivis multajn jarojn en Egiptio, malkovris denove tiun teoremon ĉirkaŭ 540 a. K. kaj ĝeneraligis ĝin al la abstrakta formulo a^2 + b^2 = c^2. \,

Estas ja vere ke ekzemple la plej malnova konata aritmetiklibro de la mondo, la egipta kalkullibro de Ahmes (nomita ankaŭ Rhind-papiruso) el la 17-a jarcento a. K., jam enhavis malfacilajn taskojn, sed mankis ĉiaj ĝeneraligo, regulo aŭ difino. Ĉe Pitagoro la praktiko iĝis scienco. Kiel priskribis la novplatonisto Proklo ĉirkaŭ la jaro 470:

... Pitagoro transformis la okupadon pri tiu sciencobranĉo al vera scienco, observante la bazon el plej alta vidpunkto kaj esplorante la teoremojn pli nematerie kaj pli intelekte.

Por la pitagoranoj ne matematiko, tiel kiel ni uzas la terminon hodiaŭ, estis la grava afero. Matematiko estis parto de la filozofio kiel en la tradicio de la antaŭ-sokratanoj Taleso el Mileto (greka Malgrand-Azio, en la hodiaŭa Turkio) kaj Anaksimandro; kiel ili, ankaŭ la pitagoranoj esperis per matematikaj rilatoj kaj formuloj trovi kaj bildigi la enan harmonion de la mondo kaj ties kunligan elementon.

[redaktu] Ĉinio

Ankaŭ en Ĉinio la teoremo estis jam delonge konita. Ĝia ĉina nomo estas gou-gou. En la verko Chou pei suan ching (ĉirkaŭ 300 a. K.) troviĝas fama desegnaĵo nomita hsuan-shu, kiu montras grafan konfirmon per ekzemplo de triangulo kun la flankoj 3, 4 kaj 5. Ankaŭ en la verko Chiu chang suan shu (Naŭ ĉapitroj pri matematikarto, 3-a jarcento a. K.), klasika ĉina matematika verko kun aro de 263 klarigoj pri solvoj de taskoj, ĝi troviĝas. Je la 3-a jarcento p. K. Liu Hiu montras en sia komentaro pri la naŭ ĉapitroj Jiuchang suanshu analizan pruvon.

[redaktu] Eksteraj ligiloj

•  Pruvoj por la teoremo de Pitagoro (germane)
•  Pruvoj por la teoremo de Pitagoro (angle)
•  Belaj Java-kromprogrametoj
•  Pitagoraj Triopoj (germane)
•  Lernilo kun pruvoj, taskoj kaj multaj ligiloj (germane)