פונקציה פשוטה

מתוך ויקיפדיה, האנציקלופדיה החופשית

פונקציה פשוטה היא צירוף לינארי סופי של פונקציות מציינות. זוהי פונקציה המוגדרת על מרחב X, וצורתה \ s(x)=\sum_{k=1}^n a_k{\mathbf 1}_{A_k}(x), כאשר \ A_k הן תת-קבוצות של X, והמקדמים \ a_k הם סקלרים, למשל מספרים מרוכבים.

בגלל המבנה הפשוט של פונקציות כאלה, קל להוכיח עליהן טענות שונות. תכונה זו מאפשרת להוכיח תכונות של פונקציות כלליות יותר, שאותן אפשר לעתים לקרב על-ידי פונקציות פשוטות. שימוש כזה שכיח בתורת המידה, שם מניחים דרך קבע שהקבוצות \ A_k בהגדרת הפונקציה הפשוטה הן קבוצות מדידות.

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום לוויקיפדיה ולהרחיב אותו.

שפות אחרות