Borel–Lebesgue-tétel

A Wikipédiából, a szabad lexikonból.

A Borel–Lebesgue lefedési tétel vagy Heine–Borel-tétel a matematikai analízis egy a zárt, korlátos intervallumok lényeges tulajdonságára rámutató tétel, mely a topologikus terek elméletében a kompakt halmaz fogalmának motivációjául szolgál.

Tartalomjegyzék

[szerkesztés] A tétel

Tétel – (Dirichlet 1862, Heine 1872) – Ha KR korlátos és zárt halmaz és K-nak \mbox{ }_{(\Omega_i)_{i\in I}} nyílt lefedése, akkor ebből kiválasztható véges sok elem, mely még mindig lefedi K-t.

(A K nyílt lefedésén olyan nyílt halmazokból álló \mbox{ }_{(\Omega_i)_{i\in I}} halmazrendszert értünk, amire teljesül, hogy K részhalmaza \mbox{ }_{(\Omega_i)_{i\in I}} uniójának.)

[szerkesztés] Bizonyítás

A Cantor-féle közösrész tétel egy ekvivalens megfogalmazását fogjuk használni. Eszerint, ha \mbox{ }_{(F_\alpha)_{\alpha\in A}} R-beli korlátos és zárt halmazok olyan nemüres rendszere, hogy minden α, βA indexre létezik olyan γA index, hogy Fγ ⊆ Fα∩Fβ (azaz lefelé irányított), akkor az \mbox{ }_{(F_\alpha)_{\alpha\in A}} halmazrendszer metszete nem üres.

Jelölje A az I véges részhalmazainak halmazát és legyen tetszőleges αA-ra:

F_{\alpha}:=K\setminus \bigcup\limits_{i\in\alpha}\Omega_i

Ekkor a \mbox{ }_{(F_\alpha)_{\alpha\in A}} halmazrendszer olyan, hogy minden eleme korlátos és zárt R-ben és tetszőleges α, βA-ra a γ := α U β elem olyan, hogy Fγ ⊆ Fα∩Fβ. A tételt azt igazolná, ha belátnánk, hogy van olyan αA, hogy Fα ≠ ∅, ugyanis ekkor

K\subseteq \bigcup\limits_{i\in\alpha}\Omega_i

teljesülne.

Ha \mbox{ }_{(F_\alpha)_{\alpha\in A}} minden eleme nemüres volna, akkor a Cantor-axióma fenti alakjából következne, hogy

\bigcap\limits_{\alpha\in A}F_{\alpha}\ne\emptyset

ami ellentmondás, hiszen \mbox{ }_{(F_\alpha)_{\alpha\in A}} definíciójából és a halmazkivonásra vonatkozó de-Morgan-szabályból következik, hogy

\bigcap\limits_{\alpha\in A}F_{\alpha}=K\setminus\bigcup\limits_{\alpha\in A}\left(\bigcup\limits_{i\in \alpha}\Omega_i\right)=K\setminus\bigcup\limits_{i\in I}\Omega_i=\emptyset

Tehát van \mbox{ }_{(F_\alpha)_{\alpha\in A}}-nak olyan eleme, mely üres, és az ezt indexező αA-val a \mbox{ }_{(\Omega_i)_{i\in \alpha}} a kívánt tulajdonságú lefedés lesz.

[szerkesztés] A tétel megfordítása

A lefedési tulajdonság motiválja a kompakt halmaz fogalmát. A KR halmaz kompakt, ha minden nyílt lefedéséből kiválasztható véges részlefedés. Ekkor a Borel–Lebesgue-tétel megfordítása érvényes:

TételR-ben minden kompakt halmaz korlátos és zárt.

Bizonyítás. Legyen K kompakt halmaz.

Először a korlátosságot látjuk be. Legyen u tetszőleges R-beli pont. Ekkor világos, hogy a (B(u,n))nN rendszer lefedi K-t. Ebből kiválaszható véges részlefedés, melyek közül a legnagyobb sugarú lefedi K-t, így K átmérője legfeljebb ennek a sugárnak a kétszerese.

Vegyünk egy tetszőleges x pontot K komplementeréből (xK). A

\mbox{ }_{\left(\,B\left(y,\frac{d(y,x)}{2}\right)\,\right)_{y\in K}}

rendszer lefedi K-t így létezik n darab y1, ..., yn K-beli elem, hogy

\mbox{ }_{K\subseteq\bigcup\limits_{i=1,...,n}\,B\left(y_i,\frac{d(y_i,x)}{2}\right)}

Ha r a legkisebb sugár mindközül, akkor a B(x,r) halmaz nem metsz bele az iménti lefedés egyik elemébe sem, így K-ba sem. Tehát K komplementere nyílt, K pedig zárt.

[szerkesztés] Általánosítás

Mind a tétel, mind a megfordítása igaz Rn-re is:

Rn egy részhalmaza akkor és csak akkor kompakt, ha korlátos és zárt.

Ám, tetszőleges M metrikus térben csak a megfordítás érvényes:

Ha H az M metrikus tér részhalmaza, akkor:
H kompakt \Rightarrow H korlátos és zárt
H kompakt \not\LeftarrowH korlátos és zárt

Létezik ugyanis olyan metrikus tér és benne olyan korlátos és zárt halmaz, ami nem kompakt. Ilyen például a korlátos számsorozatok \mbox{ }_{\ell^{\infty}(\mathbf{R})} tere, ahol a norma: ||(xn)||=supn{|xn|}, az ellenpélda pedig a \mbox{ }_{\overline{B}(0,1)=\{s\in\ell^{\infty}(\mathbf{R})\;|\;||s-0||\leq 1\}} zárt gömb (itt 0 az azonosan 0 sorozat).

Metrikus terekben a kompaktság ekvivalens a sorozatkompaktság fogalmával, így a Borel–Lebesgue-tétel és a Bolzano–Weierstrass-tétel ugyanannak a fogalomnak két ekvivalens megfogalmazását mondják ki. Ilyen általános közegben a kompaktság jellemzésére vonatkozik a tétel egy általánosítása:

Tétel – Egy metrikus tér tetszőleges részhalmaza akkor és csak akkor kompakt, ha teljes és teljesen korlátos.

Tetszőleges (legalább Hausdorff-féle) topologikus térben kompakt halmazokra a Borel–Lebesgue-tétel állítása definíció szerint teljesül, hiszen ezeken a terekben a kompaktság a lefedési tulajdonsággal van definiálva. (Itt a korlátosság más kontextusban vetődik fel, hiszen ezekben a terekben a kompakt halmazok részhalmazait nevezik korlátosnak. A zártság ugyanúgy fennáll.)