Таблиця інтегралів

Матеріал з Вікіпедії — вільної енциклопедії.

Інтегрування - нетривіальна процедура. Таблиці відомих первісних виявляються часто дуже корисними. На цій сторінці представлено список основних первісних.

C вживається як довільна константа інтегрування, яку можна визначити якщо відомо значення інтеграла в якій-небудь точці.

Зміст

[ред.] Правила інтегрування функцій

\int cf(x)\,dx = c\int f(x)\,dx
\int [f(x) + g(x)]\,dx = \int f(x)\,dx + \int g(x)\,dx
\int f(x)g(x)\,dx = f(x)\int g(x)\,dx - \int \left(d[f(x)]\int g(x)\,dx\right)\,dx

[ред.] Інтеграли простих функцій

[ред.] Раціональні функції

\int \,dx = x + C
\int x^n\,dx =  \frac{x^{n+1}}{n+1} + C, якщо n \ne -1
\int \frac{1}{x}\,dx = \ln{\left|x\right|} + C
\int {du \over {a^2+u^2}} = {1 \over a}\arctan {u \over a} + C

[ред.] Логарифмічні функції

\int \ln {x}\,dx = x \ln {x} - x + C
\int \log_b {x}\,dx = x\log_b {x} - x\log_b {e} + C

[ред.] Експонента

\int e^x\,dx = e^x + C
\int a^x\,dx = \frac{a^x}{\ln{a}} + C

[ред.] Ірраціональні функції

\int {du \over \sqrt{a^2-u^2}} = \arcsin {u \over a} + C
\int {-du \over \sqrt{a^2-u^2}} = \arccos {u \over a} + C
\int {du \over u\sqrt{u^2-a^2}} = {1 \over a}\mbox{arcsec}\,{|u| \over a} + C

[ред.] Тригонометричні функції

\int \sin{x}\, dx = -\cos{x} + C
\int \cos{x}\, dx = \sin{x} + C
\int \tan{x} \, dx = -\ln{\left| \cos {x} \right|} + C
\int \cot{x} \, dx = \ln{\left| \sin{x} \right|} + C
\int \sec{x} \, dx = \ln{\left| \sec{x} + \tan{x}\right|} + C
\int \csc{x} \, dx = -\ln{\left| \csc{x} + \cot{x}\right|} + C
\int \sec^2 x \, dx = \tan x + C
\int \csc^2 x \, dx = -\cot x + C
\int \sec{x} \, \tan{x} \, dx = \sec{x} + C
\int \csc{x} \, \cot{x} \, dx = - \csc{x} + C
\int \sin^2 x \, dx = \frac{1}{2}(x - \sin x \cos x) + C
\int \cos^2 x \, dx = \frac{1}{2}(x + \sin x \cos x) + C
\int \sin^n x \, dx = - \frac{\sin^{n-1} {x} \cos {x}}{n} + \frac{n-1}{n} \int \sin^{n-2}{x} \, dx
\int \cos^n x \, dx = - \frac{\cos^{n-1} {x} \sin {x}}{n} + \frac{n-1}{n} \int \cos^{n-2}{x} \, dx
\int \arctan{x} \, dx = x \, \arctan{x} + \ln \sqrt{1 + x^2} + C

[ред.] Гіперболічні функції

\int \sinh x \, dx = \cosh x + C
\int \cosh x \, dx = \sinh x + C
\int \tanh x \, dx = \ln |\cosh x| + C
\int \mbox{csch}\,x \, dx = \ln\left| \tanh {x \over2}\right| + C
\int \mbox{sech}\,x \, dx = \arctan(\sinh x) + C
\int \coth x \, dx = \ln|\sinh x| + C