Bantuan:Formula

Dari Wikipedia Indonesia, ensiklopedia bebas berbahasa Indonesia.

MediaWiki menggunakan sebagian markah TeX, termasuk beberapa ekstensi dari LaTeX dan AMSLaTeX untuk menggambarkan formula matematis. MediaWiki dapat menghasilkan berkas PNG atau markah HTML sederhana, tergantung pada preferensi pengguna dan tingkat kesulitan rumus. Di masa datang, dengan berkembangnya kemampuan penjelajah web, MediaWiki akan mampu menghasilkan HTML canggih atau bahkan MathML pada banyak kasus.

Daftar isi

[sunting] Sintaks dan proses pembuatan

Markah Math diberikan dalam <math> ... </math> yang dapat diakses melalui tombol Berkas:Math_icon.png di toolbar suntingan.

Sama dengan HTML, spasi dan baris baru tambahan dalam TeX akan diabaikan. Templat dan parameter tidak dapat digunakan di dalam tag math. Pasangan kurung siku diabaikan dan "#" akan menghasilkan pesan kesalahan. Walaupun demikian, tag math dapat digunakan di dalam kondisi ParserFunctions seperti #if, dll.

[sunting] Fungsi, simbol, dan karakter khusus

[sunting] Aksen/diakritik

\acute{a} \grave{a} \hat{a} \tilde{a} \breve{a} \acute{a} \grave{a} \hat{a} \tilde{a} \breve{a}\,\!
\check{a} \bar{a} \ddot{a} \dot{a} \check{a} \bar{a} \ddot{a} \dot{a}\,\!

[sunting] Fungsi standar

\sin a \cos b \tan c \sin a \cos b \tan c\,\!
\sec d \csc e \cot f \sec d \csc e \cot f\,\!
\arcsin h \arccos i \arctan j \arcsin h \arccos i \arctan j\,\!
\sinh k \cosh l \tanh m \coth n \sinh k \cosh l \tanh m \coth n\,\!
\operatorname{sh}o \operatorname{ch}p \operatorname{th}q \operatorname{sh}o \operatorname{ch}p \operatorname{th}q\,\!
\operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t \operatorname{argsh}r \operatorname{argch}s \operatorname{argth}t\,\!
\lim u \limsup v \liminf w \min x \max y \lim u \limsup v \liminf w \min x \max y\,\!
\inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g \inf z \sup a \exp b \ln c \lg d \log e \log_{10} f \ker g\,\!
\deg h \gcd i \Pr j \det k \hom l \arg m \dim n \deg h \gcd i \Pr j \det k \hom l \arg m \dim n\,\!

[sunting] Aritmetika modular

s_k \equiv 0 \pmod{m} a \bmod b s_k \equiv 0 \pmod{m} a \bmod b\,\!

[sunting] Turunan

\nabla \partial x dx \dot x \ddot y \nabla \partial x dx \dot x \ddot y\,\!

[sunting] Himpunan

\forall \exists \empty \emptyset \varnothing \forall \exists \empty \emptyset \varnothing\,\!
\in \ni \not \in \notin \subset \subseteq \supset \supseteq \in \ni \not \in \notin \subset \subseteq \supset \supseteq\,\!
\cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus \cap \bigcap \cup \bigcup \biguplus \setminus \smallsetminus\,\!
\sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup \sqsubset \sqsubseteq \sqsupset \sqsupseteq \sqcap \sqcup \bigsqcup\,\!

[sunting] Operator

+ \oplus \bigoplus \pm \mp - + \oplus \bigoplus \pm \mp - \,\!
\times \otimes \bigotimes \cdot \circ \bullet \bigodot \times \otimes \bigotimes \cdot \circ \bullet \bigodot\,\!
\star * / \div \frac{1}{2} \star * / \div \frac{1}{2}\,\!

[sunting] Logika

\land \wedge \bigwedge \bar{q} \to p \land \wedge \bigwedge \bar{q} \to p\,\!
\lor \vee \bigvee \lnot \neg q \And \lor \vee \bigvee \lnot \neg q \And\,\!

[sunting] Akar

\sqrt{2} \sqrt[n]{x} \sqrt{2} \sqrt[n]{x}\,\!

[sunting] Relasi

\sim \approx \simeq \cong \dot= \overset{\underset{\mathrm{def}}{}}{=} \sim \approx \simeq \cong \dot=  \overset{\underset{\mathrm{def}}{}}{=}\,\!
\le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto \le < \ll \gg \ge > \equiv \not\equiv \ne \mbox{or} \neq \propto\,\!

[sunting] Geometri

\Diamond \Box \triangle \angle \perp \mid \nmid \| 45^\circ \Diamond \, \Box \, \triangle \, \angle \perp \, \mid \; \nmid \, \| 45^\circ\,\!

[sunting] Panah

\leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow \leftarrow \gets \rightarrow \to \not\to \leftrightarrow \longleftarrow \longrightarrow\,\!
\mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow \mapsto \longmapsto \hookrightarrow \hookleftarrow \nearrow \searrow \swarrow \nwarrow\,\!
\uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \uparrow \downarrow \updownarrow \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft\,\!
\upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \Leftarrow \Rightarrow \Leftrightarrow \Longleftarrow\,\!
\Longrightarrow \Longleftrightarrow (or \iff) \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \Longrightarrow \Longleftrightarrow \Uparrow \Downarrow \Updownarrow \leftleftarrows \leftrightarrows \Lleftarrow \leftarrowtail \looparrowleft \,\!
\leftrightharpoons \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright \leftrightharpoons  \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \Rrightarrow \rightarrowtail \looparrowright\,\!
\curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow \curvearrowright \circlearrowright \Rsh \downdownarrows \multimap \leftrightsquigarrow \rightsquigarrow \nLeftarrow \nleftrightarrow \nRightarrow\,\!
\nLeftrightarrow \longleftrightarrow \nLeftrightarrow \longleftrightarrow\,\!

[sunting] Istimewa

\eth \S \P \% \dagger \ddagger \ldots \cdots \eth \S \P \% \dagger \ddagger \ldots \cdots\,\!
\smile \frown \wr \triangleleft \triangleright \infty \bot \top \smile \frown \wr \triangleleft \triangleright \infty \bot \top\,\!
\vdash \vDash \Vdash \models \lVert \rVert \imath \hbar \vdash \vDash \Vdash \models \lVert \rVert \imath \hbar\,\!
\ell \mho \Finv \Re \Im \wp \complement \diamondsuit \ell \mho \Finv \Re \Im \wp \complement \diamondsuit\,\!
\heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp \heartsuit \clubsuit \spadesuit \Game \flat \natural \sharp\,\!

[sunting] Lain-lain

\vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown  \vartriangle \triangledown \lozenge \circledS \measuredangle \nexists \Bbbk \backprime \blacktriangle \blacktriangledown
\blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge  \blacksquare \blacklozenge \bigstar \sphericalangle \diagup \diagdown \dotplus \Cap \Cup \barwedge
\veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes  \veebar \doublebarwedge \boxminus \boxtimes \boxdot \boxplus \divideontimes \ltimes \rtimes \leftthreetimes
\rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant  \rightthreetimes \curlywedge \curlyvee \circleddash \circledast \circledcirc \centerdot \intercal \leqq \leqslant
\eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq  \eqslantless \lessapprox \approxeq \lessdot \lll \lessgtr \lesseqgtr \lesseqqgtr \doteqdot \risingdotseq
\fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft  \fallingdotseq \backsim \backsimeq \subseteqq \Subset \preccurlyeq \curlyeqprec \precsim \precapprox \vartriangleleft
\Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot  \Vvdash \bumpeq \Bumpeq \geqq \geqslant \eqslantgtr \gtrsim \gtrapprox \eqsim \gtrdot
\ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq  \ggg \gtrless \gtreqless \gtreqqless \eqcirc \circeq \triangleq \thicksim \thickapprox \supseteqq
\Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork  \Supset \succcurlyeq \curlyeqsucc \succsim \succapprox \vartriangleright \shortmid \shortparallel \between \pitchfork
\varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq  \varpropto \blacktriangleleft \therefore \backepsilon \blacktriangleright \because \nleqslant \nleqq \lneq \lneqq
\lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid  \lvertneqq \lnsim \lnapprox \nprec \npreceq \precneqq \precnsim \precnapprox \nsim \nshortmid
\nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr  \nvdash \nVdash \ntriangleleft \ntrianglelefteq \nsubseteq \nsubseteqq \varsubsetneq \subsetneqq \varsubsetneqq \ngtr
\ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq  \ngeqslant \ngeqq \gneq \gneqq \gvertneqq \gnsim \gnapprox \nsucc \nsucceq \succneqq
\succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq  \succnsim \succnapprox \ncong \nshortparallel \nparallel \nvDash \nVDash \ntriangleright \ntrianglerighteq \nsupseteq
\nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq  \nsupseteqq \varsupsetneq \supsetneqq \varsupsetneqq
\jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus \jmath \surd \ast \uplus \diamond \bigtriangleup \bigtriangledown \ominus\,\!
\oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq \oslash \odot \bigcirc \amalg \prec \succ \preceq \succeq\,\!
\dashv \asymp \doteq \parallel \dashv \asymp \doteq \parallel\,\!

[sunting] Subskrip, superskrip, limit, turunan, integral

Fungsi Perintah Hasil
HTML PNG
Superskip (pangkat) a^2 a2 a^2 \,\!
Subskrip a_2 a2 a_2 \,\!
Kelompok sub & super a^{2+2} a2 + 2 a^{2+2}\,\!
a_{i,j} ai,j a_{i,j}\,\!
Kombinasi sub & super x_2^3 x_2^3
Sub dan super pada sebuah simbol \sideset{_1^2}{_3^4}\prod_a^b \sideset{_1^2}{_3^4}\prod_a^b
{}_1^2\!\Omega_3^4 {}_1^2\!\Omega_3^4
Menumpuk simbol \overset{\alpha}{\omega} \overset{\alpha}{\omega}
\underset{\alpha}{\omega} \underset{\alpha}{\omega}
\overset{\alpha}{\underset{\gamma}{\omega}} \overset{\alpha}{\underset{\gamma}{\omega}}
\stackrel{\alpha}{\omega} \stackrel{\alpha}{\omega}
Turunan (PNG) x^\prime, y^{\prime\prime} x^\prime, y^{\prime\prime} x^\prime, y^{\prime\prime}\,\!
Turunana (HTML) x\prime, y\prime\prime x\prime, y\prime\prime x\prime, y\prime\prime\,\!
Turunan titik \dot{x}, \ddot{x} \dot{x}, \ddot{x}
Vektor, garis bawah, garis atas \hat a \ \bar b \ \vec c \hat a \ \bar b \ \vec c
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} \overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f}
\overline{g h i} \ \underline{j k l} \overline{g h i} \ \underline{j k l}
Panah A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C  A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C
Kurawal atas \overbrace{ 1+2+\cdots+100 }^{5050} \overbrace{ 1+2+\cdots+100 }^{5050}
Kurawal bawah \underbrace{ a+b+\cdots+z }_{26} \underbrace{ a+b+\cdots+z }_{26}
Penjumlahan Sigma \sum_{k=1}^N k^2 \sum_{k=1}^N k^2
Penjumlahan Sigma (model teks) \textstyle \sum_{k=1}^N k^2 \textstyle \sum_{k=1}^N k^2
Perkalian Pi \prod_{i=1}^N x_i \prod_{i=1}^N x_i
Perkalian Pi (model teks) \textstyle \prod_{i=1}^N x_i \textstyle \prod_{i=1}^N x_i
Perkalian 1/Pi \coprod_{i=1}^N x_i \coprod_{i=1}^N x_i
Perkalian 1/Pi (model teks) \textstyle \coprod_{i=1}^N x_i \textstyle \coprod_{i=1}^N x_i
Limit \lim_{n \to \infty}x_n \lim_{n \to \infty}x_n
Limit (model teks) \textstyle \lim_{n \to \infty}x_n \textstyle \lim_{n \to \infty}x_n
Integral \int_{-N}^{N} e^x\, dx \int_{-N}^{N} e^x\, dx
Integral (model teks) \textstyle \int_{-N}^{N} e^x\, dx \textstyle \int_{-N}^{N} e^x\, dx
Integral tingkat dua \iint_{D}^{W} \, dx\,dy \iint_{D}^{W} \, dx\,dy
Integral tingkat tiga \iiint_{E}^{V} \, dx\,dy\,dz \iiint_{E}^{V} \, dx\,dy\,dz
Integral tingkat empat \iiiint_{F}^{U} \, dx\,dy\,dz\,dt \iiiint_{F}^{U} \, dx\,dy\,dz\,dt
Integral keliling \oint_{C} x^3\, dx + 4y^2\, dy \oint_{C} x^3\, dx + 4y^2\, dy
Irisan \bigcap_1^{n} p \bigcap_1^{n} p
Gabungan \bigcup_1^{k} p \bigcup_1^{k} p

[sunting] Pecahan, matriks, multibaris

[sunting] Lihat pula


Bahasa lain